
SAS® 9.4 Scalable
Performance Data Engine:
Reference, Fourth Edition

SAS® Documentation
January 9, 2023

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 Scalable Performance Data Engine:
Reference, Fourth Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 Scalable Performance Data Engine: Reference, Fourth Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

January 2023

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P9:engspde

Contents

What’s New in SAS 9.4 Scalable Performance Data Engine . v

Chapter 1 / Overview: The SPD Engine . 1
Introduction to the SPD Engine . 2
SPD Engine Compatibility . 3
Using the SMP Computer . 5
Organizing SAS Data Using the SPD Engine . 6
Comparing the Default Base SAS Engine and the SPD Engine 6
Interoperability of the Default Base SAS Engine and the SPD Engine Data Sets . 10
Sharing the SPD Engine Files . 10
Features That Enhance I/O Performance . 10
Features That Boost Processing Performance . 11
The SPD Engine Options . 12

Chapter 2 / Creating and Loading SPD Engine Files . 13
Introduction for Creating and Loading SPD Engine Files . 14
Allocating the Library Space . 14
Efficiency Using Disk Striping and Large Disk Arrays . 19
Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 19
Creating and Loading New SPD Engine Data Sets . 21
Updates to a Compressed SPD Engine Data Set . 22
Encrypting SPD Engine Data Sets . 24
SPD Engine Component File Naming Conventions . 26
Efficient Indexing in the SPD Engine . 28
Backing Up SPD Engine Files . 29
Storing SPD Engine Data in HDFS . 30

Chapter 3 / SPD Engine LIBNAME Statement . 31
Introduction to the SPD Engine LIBNAME Statement . 31
Dictionary . 32

Chapter 4 / SPD Engine Data Set Options . 57
Introduction to SPD Engine Data Set Options . 58
Syntax . 58
SPD Engine Data Set Options List . 58
SAS Data Set Options That Behave Differently with the SPD

Engine Than with the Default Base SAS Engine . 60
SAS Data Set Options Not Supported by the SPD Engine . 60
Dictionary . 61

Chapter 5 / SPD Engine System Options . 109
Introduction to SPD Engine System Options . 109
Syntax . 110
SAS System Options That Behave Differently with the SPD Engine

Than with the Default Base SAS Engine . 110
Dictionary . 111

iv Contents

What’s New in SAS 9.4 Scalable
Performance Data Engine

Overview
The following are new or enhanced for SAS 9.4:

n ALIGN= data set option

n COMPRESS= LIBNAME statement option

n ENCRYPT=AES (Advanced Encryption Standard) data set option

n ENCRYPTKEY= data set option

n IOBLOCKSIZE= LIBNAME statement option

n In SAS 9.4M1, SPD Engine does not support DLDMGACTION=NOINDEX, but
does support ABORT, FAIL, PROMPT, and REPAIR.

n In SAS 9.4M3, a new section named “Accessing SPD Engine Files on Another
Host” on page 3 was added.

n In SAS 9.4M5, SPD Engine supports cross-environment data access (CEDA).

SPD Engine Data Set Options
New and enhanced SPD Engine data set options enable you to do the following:

n The new ALIGN= data set option specifies variable alignment. For more
information, see “ALIGN= Data Set Option” on page 61.

n The ENCRYPT= data set option has been enhanced to include the AES
algorithm for stronger security. For more information, see “Encrypting SPD
Engine Data Sets” on page 24.

n The new ENCRYPTKEY= data set option specifies the key value for AES
encryption. For more information, see “ENCRYPTKEY= Data Set Option” on
page 78.

v

SPD Engine LIBNAME Statement
Options

The new LIBNAME statement options enable you to do the following:

n In SAS Viya 3.5, the SPD Engine INENCODING LIBNAME option is available.
This version of the INENCODING option does not work the same as the Base
SAS INENCODING option.

n In SAS 9.4M2, the new IOBLOCKSIZE= LIBNAME statement option enables you
to specify the size in bytes of a block of observations to be used in an I/O
operation. For more information, see “IOBLOCKSIZE= LIBNAME Statement
Option” on page 46.

n In SAS 9.4M2, the COMPRESS= LIBNAME statement option enables you to
compress an SPD Engine data set on disk as it is being created.

Cross-Environment Data Access (CEDA)
In SAS 9.4M5, SPD Engine supports cross-environment data access (CEDA) with
additional restrictions. In SAS 9.4M6 and SAS Viya 3.3, CEDA is supported in the
FEDSQL procedure, FedSQL language, DS2 procedure, and DS2 language. See
“Accessing SPD Engine Files on Another Host” on page 3.

vi What’s New in SAS 9.4 Scalable Performance Data Engine

1
Overview: The SPD Engine

Introduction to the SPD Engine . 2

SPD Engine Compatibility . 3
Upgrading SAS 9 . 3
Accessing SPD Engine Files on Another Host . 3
Cross-Environment Data Access (CEDA) in SPD Engine . 4
Additional Restrictions for CEDA in SPD Engine . 4

Using the SMP Computer . 5

Organizing SAS Data Using the SPD Engine . 6

Comparing the Default Base SAS Engine and the SPD Engine 6
Overview of Comparisons . 6
The SPD Engine Libraries and File Systems . 7
Utility File Workspace . 7
Storing Temporary Data Sets . 7
Differences between the Default Base SAS Engine Data Sets and

the SPD Engine Data Sets . 8

Interoperability of the Default Base SAS Engine and the SPD Engine Data Sets . 10

Sharing the SPD Engine Files . 10

Features That Enhance I/O Performance . 10
Overview of I/O Performance Enhancements . 10
Multiple Directory Paths . 10
Physical Separation of the Data File and the Associated Indexes 11
WHERE Optimization . 11

Features That Boost Processing Performance . 11
Automatic Sort Capabilities . 11
Queries Using Indexes . 12
Parallel Index Creation . 12

The SPD Engine Options . 12

1

Introduction to the SPD Engine
The SPD Engine is designed for high-performance data delivery. It enables an
application rapid access to SAS data for processing. The SPD Engine delivers data
to applications rapidly because it organizes the data into a streamlined file format
that takes advantage of multiple CPUs to perform parallel input functions.

The SPD Engine uses threads to read blocks of data very rapidly and in parallel.
Tasks are performed in conjunction with an operating system that enables threads to
execute on any of the computer’s available CPUs. Although threaded Read tasks
are an important part of the SPD Engine functionality, the real power of the SPD
Engine comes from how it structures SAS data. The SPD Engine organizes data
into a file format that includes partitioning the data. This data structure permits
threads, running in parallel, to perform Read tasks efficiently.

The SPD Engine is a high-speed alternative to the default Base SAS engine for
processing very large data sets. It reads data sets that contain billions of
observations. For example, this includes data sets that expand beyond the size limit
imposed by some operating systems and data sets that SAS analytic software and
procedures must process faster.

The SPD Engine boosts performance in the following ways:

n support for hundreds of gigabytes of data

n scalability on symmetric multiprocessor (SMP) computers and massively parallel
processor (MPP) computers

n parallel WHERE selections

n parallel loads

n parallel index creation

n parallel data delivery to applications

n automatic sorting on BY statements

The SPD Engine runs on UNIX, Windows, and z/OS (zFS file system only). The
SPD Engine is not supported on the CAS server.

Note: Be sure to visit the Scalability and Performance Community focus area at
http://support.sas.com/rnd/scalability for more information about scalability. For
system requirements, visit the Install Center at http://support.sas.com/
documentation/installcenter.

2 Chapter 1 / Overview: The SPD Engine

http://support.sas.com/rnd/scalability
http://support.sas.com/documentation/installcenter
http://support.sas.com/documentation/installcenter

SPD Engine Compatibility

Upgrading SAS 9
If you upgrade from a previous release of SAS 9, you do not need to migrate your
data sets if you stay in the same operating environment. If you upgrade across
hosts, such as from a 32-bit to a 64-bit Windows operating environment, you might
experience reduced performance or other restrictions due to cross-environment data
access (CEDA). SPD Engine supports CEDA in SAS 9.4M5 and later.

To migrate your data sets, use a tool such as the COPY procedure or the CPORT
and CIMPORT procedures. (SPD Engine does not support the MIGRATE
procedure.) For more information, see the Base SAS Procedures Guide.

Accessing SPD Engine Files on Another Host
The SPD Engine has full Read and Write access to SPD Engine files on another
host if they are in the same operating environment family. In SAS 9.4M5 and later,
the SPD Engine has Read-Only access to data sets in a different operating
environment family, under cross-environment data access (CEDA).

You are advised to access the data set at the location where it was created. For
example, you can access files directly via a Network File System (NFS). Do not use
operating system commands to move an SPD Engine data set. An SPD Engine data
set that is moved by using operating system commands is not usable if the data set
was created using alternate paths for data partition or index partition storage. See
“DATAPATH= LIBNAME Statement Option” on page 39 and “INDEXPATH=
LIBNAME Statement Option” on page 44.

Here are the operating environment families for the SPD Engine. In the following
table, each row contains a group of operating environments that are compatible with
each other. CEDA is used only when you create a file with a data representation in
one row and process the file under a data representation of another row. For
example, a data set created under Linux for x64 can be used under Solaris for x64
without invoking CEDA. However, a data set created under 32-bit SAS for Windows
does invoke CEDA when the data set is processed under 64-bit SAS for Windows.

Table 1.1 Compatibility across Environments for the SPD Engine

Data Representation
Value Environment

LINUX_X86_64

SOLARIS_X86_64

Linux for x64

Solaris for x64

SPD Engine Compatibility 3

Data Representation
Value Environment

HP_IA64

HP_UX_64

RS_6000_AIX_64

SOLARIS_64

HP-UX for the Itanium Processor Family Architecture

HP-UX for PA-RISC, 64-bit

AIX

Solaris for SPARC

MVS_32 31-bit SAS on z/OS

WINDOWS_64 64-bit SAS on Microsoft Windows (for both Itanium-based
systems and x64)

WINDOWS_32 32-bit SAS on Microsoft Windows

Cross-Environment Data Access (CEDA) in SPD
Engine

When CEDA processing is used, SAS writes a note to the log to inform you. CEDA
processing is automatic and transparent, but you must be aware of the restrictions.
For example, indexes are not supported, and the extra processing can reduce
performance. For more information, see “Cross-Environment Data Access” in SAS
Programmer’s Guide: Essentials.

If you want to avoid CEDA processing, then re-create the data set in your target
environment by using a tool such as the COPY procedure or the CPORT and
CIMPORT procedures. (SPD Engine does not support the MIGRATE procedure.)
For output processing that re-creates a data file, the SPD Engine behaves
differently than the default Base SAS engine regarding file attributes. The encoding
and data representation attributes of the current SAS session are used, and the
CLONE option of PROC COPY is not supported. For more information, see the
Base SAS Procedures Guide.

Additional Restrictions for CEDA in SPD Engine
WHERE expressions are processed by the SAS supervisor. The data is read
sequentially (single threaded). The data cannot be read in parallel (multithreaded).

The automatic sort (BYSORT=YES) is not supported for CEDA processing. If a BY
statement is issued and the data set is not indexed or in sort order, an error is
written to the log.

4 Chapter 1 / Overview: The SPD Engine

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en

Indexes are not supported by CEDA under any engine. Under SPD Engine, in
addition, you might not be able to delete a data set if its indexes are in an
INDEXPATH= location. This restriction is due to the fact that the path specification
for UNIX and z/OS operating environments is different from the specification for
Windows operating environments. See “INDEXPATH= LIBNAME Statement Option”
on page 44.

The following restrictions can make a data set unreadable under CEDA. In addition,
these restrictions can prevent you from using a tool such as the COPY procedure or
the CPORT and CIMPORT procedures to re-create a data set in the current
environment.

n Data files that are in a DATAPATH= location might not be accessible. This
restriction is due to the fact that the path specification for UNIX and z/OS
operating environments is different from the specification for Windows operating
environments. See “DATAPATH= LIBNAME Statement Option” on page 39.

n AES-encrypted data sets have limited support under CEDA. An AES-encrypted
SPD Engine data set is accessible if it is created and accessed within one of
these operating environment families:

o among 32-bit Windows and 64-bit Windows

o among UNIX environments

For example, an AES-encrypted data set that was created under UNIX cannot
be accessed under Windows. If the data cannot be decrypted, then an error is
written to the log and the data set is not opened.

n In z/OS environments, the SPD Engine does not support CEDA processing of
encrypted data sets. In other environments, encrypted data sets created under
z/OS are not supported.

n For data sets that are processed or created by the SPD Engine under z/OS
environments, all CEDA processing is preproduction.

n An SPD Engine data set that is moved by using operating system commands
might not be usable. You are advised to access the data set at the location
where it was created.

Using the SMP Computer
The SPD Engine exploits a hardware and software architecture known as symmetric
multiprocessing. An SMP computer has multiple central processing units (CPUs)
and an operating system that supports threads. An SMP computer is usually
configured with multiple controllers and multiple disk drives per controller. When the
SPD Engine reads a data file, it launches one or more threads for each CPU; these
threads then read data in parallel from multiple disk drives, driven by one or more
controllers per CPU. The SPD Engine running on an SMP computer provides the
capability to read and deliver much more data to an application in a given elapsed
time.

Reading a data set with an SMP computer that has 5 CPUs and 10 disk drives could
be as much as 5 times faster than I/O on a single-CPU computer. In addition to
threaded I/O, an SMP computer enables threading of application processes (for
example, threaded sorting in the SORT procedure in SAS 9.1 or later).

Using the SMP Computer 5

The exact number of CPUs on an SMP computer varies by manufacturer and
model. The operating system of the computer is also specialized; it must be capable
of scheduling code segments so that they execute in parallel. If the operating
system kernel is threaded, performance is further enhanced because it prevents
contention between the executing threads.

As threads run on the SMP computer, managed by a threaded operating system,
the available CPUs work together. The synergy between the CPUs and threads
enables the software to scale processing performance. The scalability, in turn,
significantly increases overall processing speed for tasks such as creating data sets,
appending data, and querying the data by using WHERE statements.

Organizing SAS Data Using the SPD
Engine

Because the SPD Engine organizes data for high-performance processing, an SPD
Engine data set is physically different from a default Base SAS engine data set. The
default Base SAS engine stores data in one file that contains both data and
descriptor (metadata). The SPD Engine creates multiple files for each data set.
Each of these files is called a component file. The files can span volumes, but are
referenced as one data set. Each filename consists of the data set name, the
filetype, and an alphanumeric identifier. See also “SPD Engine Component File
Naming Conventions” on page 26.

n Every SPD Engine data set has a metadata file with the .mdf filetype embedded
in the filename. Usually, an SPD Engine data set has only one .mdf file. The .mdf
file stores the pathnames of the data set’s other component files.

n If you index a data set, the SPD Engine creates a hybrid index. Each index is
stored in two files, with .hbx and .idx filetype embedded in the filename.

n The data component of an SPD Engine data set can be several files (partitions)
per path or device, with .dpf filetype. Each of these partitions is a fixed length,
specified when you create the data set.

Comparing the Default Base SAS Engine
and the SPD Engine

Overview of Comparisons
Default Base SAS engine data sets and SPD Engine data sets have many
similarities. They both store data in a SAS library, which is a logical collection of

6 Chapter 1 / Overview: The SPD Engine

files. Because the SPD Engine data libraries can span devices and file systems, the
SPD Engine is ideal for use with very large data sets. Also, the SPD Engine enables
you to specify separate directories, or devices, for each component in the LIBNAME
statement. “Overview of Comparisons” on page 6 provides details about designing
and setting up the SPD Engine data libraries.

The SPD Engine Libraries and File Systems
An SPD Engine library can contain data files, metadata files, and index files. The
SPD Engine does not support catalogs, SAS views, MDDBs, or other utility (byte)
files.

The SPD Engine uses the zFS file system for z/OS.

Utility File Workspace
Utility files are generated during the SPD Engine operations that need extra space
(for example, when creating parallel indexes or when sorting very large files).
Default locations exist for all platforms but, if you have large amounts of data to
process, the default location might not be large enough. The SPD Engine system
option SPDEUTILLOC= lets you specify a set of file locations in which to store utility
scratch files. For more information, see “SPDEUTILLOC System Option” on page
119.

Storing Temporary Data Sets
To create a library to store interim data sets, specify the SPD Engine option TEMP=
in the LIBNAME statement. If you want current applications to refer to these interim
files using one-level names, specify the library on the USER= system option.

The following example code creates a user libref for interim data sets. It is deleted at
the end of the session.

libname user spde 'SAS-library' temp=yes;
data a; x=1;
run;
proc print data=a;

The USER= option can be set in the configuration file so that applications that
reference interim data sets with one-level names can run in the SPD Engine.

Comparing the Default Base SAS Engine and the SPD Engine 7

Differences between the Default Base SAS Engine
Data Sets and the SPD Engine Data Sets

The following chart compares the SPD Engine capabilities to default Base SAS
engine capabilities.

Table 1.2 Comparing the Default Base SAS Engine Data Sets and the SPD Engine Data Sets

Feature SPD Engine Default Base SAS Engine

Partitioned data sets yes no

Parallel WHERE optimization yes no

Lowest locking level member record

Concurrent access from multiple
SAS sessions on a given data set

READ (INPUT Open mode) READ and WRITE (all Open
modes)

Automatic sort for SAS BY
processing (sort a temporary copy
of the data to support BY
processing)

yes no

Formats and informats yes, with some differences if
user-defined1

yes

Catalogs no yes

Views no yes

MDDBs no yes

Integrity constraints no yes

Data set generations no yes

CEDA yes, with additional
restrictions2

yes

Audit trail no yes

NLS transcoding no yes

COMPRESS= YES | NO | CHAR | BINARY
(only if the file is not
encrypted)

YES | NO | CHAR | BINARY

8 Chapter 1 / Overview: The SPD Engine

Feature SPD Engine Default Base SAS Engine

DLCREATEDIR no yes

ENCRYPT= cannot be used with
COMPRESS=

can be used with COMPRESS=

ENCRYPT=YES yes yes

ENCRYPT=AES data and index files only yes

ENCRYPT=AES2 no3 yes

FIRSTOBS= system option and
data set option

no yes

OBS= system option and data set
option

yes, if used without
ENDOBS= or STARTOBS=
SPD Engine options

yes

EXTENDOBSCOUNTER= system
option and data set option

no yes

Extended attributes no yes

Functions and call routines yes, with some exceptions yes

Move table via OS utilities to a
different directory or folder

no yes

Observations returned in physical
order

no, if BY or WHERE is
present

yes

DLDMGACTION= system option
and data set option

yes, with ABORT | FAIL |
PROMPT | REPAIR, but not
with NOINDEX

yes

1 User-defined formats and informats, if used in a WHERE clause, cause WHERE processing to be done in a single thread
rather than in parallel. In such a case, a warning is written to the log.

2 Beginning in SAS 9.4M5, CEDA is supported with additional restrictions. See “Accessing SPD Engine Files on Another
Host” on page 3.

3 If a default Base SAS data set with AES2 encryption is copied to create a new SPD Engine data set, the encryption
converts to AES. A warning is written to the log.

Comparing the Default Base SAS Engine and the SPD Engine 9

Interoperability of the Default Base SAS
Engine and the SPD Engine Data Sets

Default Base SAS engine data sets must be converted to the SPD Engine format so
that the SPD Engine can access them. You can convert the default Base SAS
engine data sets easily using the COPY procedure, the APPEND procedure, or a
DATA step. (PROC MIGRATE cannot be used.) In addition, most of your existing
SAS programs can run on the SPD Engine files with little modification other than to
the LIBNAME statement. Chapter 2, “Creating and Loading SPD Engine Files,” on
page 13 provides details about converting default Base SAS engine data sets to
the SPD Engine format.

Sharing the SPD Engine Files
The SPD Engine supports member-level locking, which means that multiple users
can have the same SPD Engine data set open for INPUT (read-only). However, if an
SPD Engine data set has been opened for update or for index creation, then only
that user can access it.

Features That Enhance I/O Performance

Overview of I/O Performance Enhancements
The SPD Engine has several features that enhance I/O performance. These
features can dramatically increase the performance of I/O bound applications, in
which large amounts of data must be delivered to the application for processing.

Multiple Directory Paths
You can specify multiple directory paths and devices for each component type
because the SPD Engine can reference multiple physical files across volumes as a
single logical file. For very large data sets, this feature circumvents any file size
limits that the operating system might impose.

10 Chapter 1 / Overview: The SPD Engine

Physical Separation of the Data File and the
Associated Indexes

Because each component file type can be stored in a different location, file
dependencies are not a concern when deciding where to store the component files.
Only cost, performance, and availability of disk space need to be considered.

WHERE Optimization
The SPD Engine automatically determines the best method to use to evaluate
observations for qualifying criteria specified in a WHERE statement. WHERE
statement efficiency depends on such factors as whether the variables in the
expression are indexed. A WHERE evaluation planner is included in the SPD
Engine. It can choose the best method to use to optimize evaluation of WHERE
expressions that use indexes.

Most WHERE-expression syntax supports multithreaded processing. To know when
WHERE processing is single threaded, set the SAS system option MSGLEVEL=I
and check the log. Here is an example of a log message:

WARNING: A function, format, or informat has prevented SPD Engine from processing
the where
 clause. The SAS supervisor will process it instead, and no parallel where-
clause
 processing will occur.

Features That Boost Processing
Performance

Automatic Sort Capabilities
The SPD Engine's automatic sort capabilities save time and resources for SAS
applications that process large data sets. With the SPD Engine, you do not need to
invoke the SORT procedure before you submit a SAS statement with a BY clause.
When the SPD Engine encounters a BY clause and the data is not already sorted or
indexed on the BY variable, the SPD Engine automatically sorts the data. The
automatic sort does not affect the permanent data set or produce a new output data
set.

Features That Boost Processing Performance 11

Queries Using Indexes
Large data sets can be indexed to maximize performance. Indexes permit rapid
WHERE expression evaluations for indexed variables. The SPD Engine takes
advantage of multiple CPUs to search the index component file efficiently.

Note: You cannot create an index or composite index on a variable if the variable
name contains any of the following special characters (even with the
VALIDMEMNAME=EXTEND option):

" * | \ : / < > ? - .

Parallel Index Creation
In addition, the SPD Engine supports parallel index creation so that indexing large
data sets is not time-consuming. The SPD Engine decomposes data set Append or
Insert operations into a set of steps that can be performed in parallel. The level of
parallelism depends on the number of indexes present in the data set. The more
indexes you have, the greater the exploitation of parallelism during index creation.
However, index creation requires utility file space and memory resources.

Note: You cannot create an index or composite index on a variable if the variable
name contains any of the following special characters (even with the
VALIDMEMNAME=EXTEND option):

" * | \ : / < > ? - .

The SPD Engine Options
The SPD Engine works with many default Base SAS engine options. In addition,
there are options that are used only with the SPD Engine that enable you to further
manage the SPD Engine libraries and processing. See:

n SPD Engine Data Set Options on page 58

n SPD Engine LIBNAME Statement Options on page 31

n SPD Engine System Options on page 109

12 Chapter 1 / Overview: The SPD Engine

2
Creating and Loading SPD
Engine Files

Introduction for Creating and Loading SPD Engine Files . 14

Allocating the Library Space . 14
How to Allocate the Library Space . 14
Configuring Space for All Components in a Single Path . 14
Configuring Separate Library Space for Each Component File Type 15
Anticipating the Space for Each Component File . 16
Storage of the Metadata Component Files . 16
Renaming, Copying, or Moving Component Files . 19

Efficiency Using Disk Striping and Large Disk Arrays . 19

Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 19
Using the COPY and APPEND Procedures . 19
Converting Default Base SAS Engine Data Sets Using PROC COPY 20
Converting Default Base SAS Engine Data Sets Using PROC APPEND 21

Creating and Loading New SPD Engine Data Sets . 21

Updates to a Compressed SPD Engine Data Set . 22

Encrypting SPD Engine Data Sets . 24
SPD Engine Encryption Overview . 24
SAS Proprietary Algorithm . 25
AES Algorithm . 26

SPD Engine Component File Naming Conventions . 26

Efficient Indexing in the SPD Engine . 28
Parallel Indexing . 28
Parallel Index Creation . 28
Parallel Index Updates . 29

Backing Up SPD Engine Files . 29

Storing SPD Engine Data in HDFS . 30

13

Introduction for Creating and Loading
SPD Engine Files

This section provides details about allocating SPD Engine libraries and creating and
loading SPD Engine data and indexes. Performance considerations related to these
tasks are also discussed.

Allocating the Library Space

How to Allocate the Library Space
To realize performance gains through SPD Engine’s partitioned data read and
threading capabilities, the SPD Engine libraries must be properly configured and
managed. Optimally, a SAS system administrator performs these tasks.

An SPD Engine data set requires a file system with enough space to store the
various component files. Often that file system includes multiple directories for these
components. Usually, a single directory path (part of a file system) is constrained by
a volume limit for the file system as a whole. This limit is the maximum amount of
disk space configured for the file system to use.

Within this maximum disk space, you must allocate enough space for all of the SPD
Engine component files. Understanding how each component file is handled is
critical to estimating the amount of storage that you need in each library.

Configuring Space for All Components in a Single
Path

In the simplest SPD Engine library configuration, all of the SPD Engine component
files (data files, metadata files, and index files) can reside in a single path called the
primary path. The primary path is the default path specification in the LIBNAME
statement. The following LIBNAME statement sets up the primary file system for the
MyLib library:

libname mylib spde '/disk1/spdedata';

Because there are no other path options specified, all component files are created
in this primary path. Storing all component file types in the primary path is simple
and works for very small data sets. It does not take advantage of the performance

14 Chapter 2 / Creating and Loading SPD Engine Files

boost that storing components separately can achieve, nor does it take advantage
of multiple CPUs.

Note: The SPD Engine requires complete pathnames to be specified.

Configuring Separate Library Space for Each
Component File Type

Most sites use the SPD Engine to manage very large amounts of data, which can
have thousands of variables and some of them indexed. At these sites, separate
storage paths are usually defined for the various component types. In addition,
using disk striping and RAID (Redundant Array of Independent Disks) can be very
efficient. For more information, see “SPD Engine Disk I/O Setup” in Scalability and
Performance at http://support.sas.com/rnd/scalability/spde/setup.html.

The metadata component files for all data sets in a library must reside in the primary
path.

In addition, specifying separate paths for the data component files and index
component files provides performance gains. You specify separate paths because
the Read load is distributed across disk drives. Separating the data and index
component files helps prevent disk contention and increases the level of parallelism
that can be achieved, especially in complex WHERE evaluations. The following
example code specifies a primary path for the metadata component files. The code
uses the DATAPATH= option on page 39 and the INDEXPATH= option on page
44 to specify additional, separate paths for the data and index component files:

libname all_users spde '/disk1/metadata'
 datapath= ('/disk2/userdata' '/disk3/userdata')
 indexpath= ('/disk4/userindexes' '/disk5/userindexes');

The metadata component files are stored on disk1, which is the primary path. The
data component files are on disk2 and disk3, and the index component files are on
disk4 and disk5. For all path specifications, you must specify the complete
pathname.

CAUTION
The primary path must be unique for each library. If two librefs are created with
the same primary path but with differences in the other paths, data can be lost. You
cannot use NFS in any path other than the primary path.

Note: If you are planning to store data in locally mounted drives and to access the
data from a remote computer, use the remote pathname when you specify the
LIBNAME. If /data01 and /data02 are locally mounted drives on the localA
computer, use the pathnames /nfs/localA/data01 and /nfs/localA/data02 in
the LIBNAME statement.

Allocating the Library Space 15

http://support.sas.com/rnd/scalability/spde/setup.html

Anticipating the Space for Each Component File
To properly configure the SPD Engine library space, you need to understand the
relative sizes of the SPD Engine component files. The following information provides
a general overview. For more information, see “SPD Engine Disk I/O Setup” in
Scalability and Performance at http://support.sas.com/rnd/scalability/spde/
setup.html.

Metadata component files are relatively small files, but the primary path that you
specify must be large enough to contain all of the metadata component files for the
library. Metadata component files cannot grow beyond the space available in the
path.

Index component files (both .idx and .hbx) can be medium to large, depending on
the number of distinct values in each index and whether the index is a single or
composite index. When an index component file grows beyond the space available
in the current file path, a new index component file is created in the next path.

Data component files can be numerous, depending on the amount of data and the
partition size specified for the data set. Each data partition is stored as a separate
data component file. The size of the data partition is specified in the PARTSIZE=
LIBNAME statement option on page 49 or in the PARTSIZE= data set option on
page 94. Data component files are the only component files for which you can
specify a partition size.

Storage of the Metadata Component Files

Metadata Component Files
The metadata component file for an SPD Engine data set stores the descriptive
information about the data set and the pathnames to its constituent data component
files and index component files. This concept is very important to understand
because it directly affects whether you can add data sets (with their associated
metadata component files) to the library.

The metadata component files for all of the data sets in a library must reside in the
same location specified in the primary path. In effect, the files in the primary path act
like a directory to the entire library. When an SPD Engine data set is accessed, the
SPD Engine first opens the data set’s metadata component file to determine its
attributes and to determine whether it can access all of its other component files. If a
new data set for a library is created, and the space in the primary path is full, the
SPD Engine cannot begin creating the metadata component file in that path, and
the Create operation fails with an appropriate error message. To successfully create
a new data set in this case, you must either free space in the primary path or assign
a new library and copy some or all of the data sets to the new library. Data
component files and index component files do not have that limitation. You can
specify additional space at a later time for data component files and index
component files.

16 Chapter 2 / Creating and Loading SPD Engine Files

http://support.sas.com/rnd/scalability/spde/setup.html
http://support.sas.com/rnd/scalability/spde/setup.html

Certain actions cause metadata component files to grow to exceed the file size or
space limitations. In that case, the SPD Engine creates another partition of the
metadata component file to accommodate the overflow. New metadata partitions
can reside in the primary path or in the paths specified in the “METAPATH=
LIBNAME Statement Option” on page 48.. You cannot use the METAPATH= option
to create space for a new data set’s first metadata partition. The METAPATH=
option specifies space for only metadata component files beyond the first one.

Storage of the Index Component Files
An index component file is stored based on overflow space. When an index
component file grows to exceed the file size or space limitations, the SPD Engine
creates another partition of the index component file to accommodate the overflow.
When several file paths are specified with the INDEXPATH= option, index
component files are created in the first available space, and then they overflow to
the next path when the previous path is filled. Unlike metadata component files,
index component files do not have to be in the primary path.

Storage of the Data Component Files
The data component files are the only files for which you can specify the partition
size. Partitioned data can be processed in threads easily, taking full advantage of
multiple CPUs on your computer. The partition size for the data component file is
fixed. It is set when the data set is created. The default is 128 megabytes, but you
can specify a different partition size using the PARTSIZE= option. Performance
depends on appropriate partition sizes. You are responsible for knowing the sizes
and uses of the data. SPD Engine data sets can be created with a partition size that
results in a balanced number of observations. (For more information, see
“PARTSIZE= Data Set Option” on page 94 and “PARTSIZE= LIBNAME Statement
Option” on page 49. Many data partitions can be created in each data path for a
given data set. The SPD Engine uses the file paths that you specify with the
DATAPATH= option to distribute partitions in a cyclic fashion. The SPD Engine
creates the first data partition in one of the specified paths, the second partition in
the next path, and so on. The SPD Engine continues to cycle through the file paths
as many times as needed until all data partitions for the data set are stored. The file
path for the first partition is selected at random. Assume that you specify the
following in your LIBNAME statement:

datapath=('/data1' '/data2')

The SPD Engine stores the first partition in /DATA1, the second partition in /DATA2,
the third partition in /DATA1, and so on. Cyclical distribution of the data partitions
creates disk striping, which can be highly efficient. Disk striping is discussed in detail
in “SPD Engine Disk I/O Setup” in Scalability and Performance at http://
support.sas.com/rnd/scalability/spde/setup.html.

Allocating the Library Space 17

http://support.sas.com/rnd/scalability/spde/setup.html
http://support.sas.com/rnd/scalability/spde/setup.html

Initial Set of Paths
In the following example, the LIBNAME statement specifies the MyLib directory for
the primary path. This path is used to store the metadata partitions. Other devices
and directories are specified to store the data and index partitions.

libname myref spde 'Mylib'
 datapath=('/mydisk30' '/mydisk31')
 indexpath=('/mydisk36');

Assuming that all of the data sets created in the MyLib library were large enough to
have several data partitions, they will all have their metadata in MyLib, their data
in /mydisk30 and /mydisk31, and any indexes in /mydisk36. This specifically
means that the metadata component files for those data sets include those
pathnames.

Adding Subsequent Paths
Later, if more space is needed (for example, for appending more data), additional
devices can be added for the data and index partitions, as in the following example:

libname myref spde 'Mylib'
 datapath=('/mydisk30' '/mydisk31' '/mydisk32')
 indexpath=('/mydisk36' '/mydisk37');

All of the data sets created with the MyLib library will have their metadata in MyLib,
their data in one or more of the three paths, and any indexes in /mydisk36 or /
mydisk37. If data was appended to an existing data set, the new data goes in one or
more of the three paths and the metadata component file is updated accordingly.

If one or more of the data or index partitions do not have much free space, you can
exclude them in the LIBNAME statement the next time you specify it:

libname myref spde 'Mylib'
 datapath=('/mydisk31' '/mydisk32' '/mydisk33')
 indexpath=('/mydisk37' '/mydisk38');

The SPD Engine is still able to access data sets that use the excluded paths
because the data sets’ metadata includes all of the used paths.

Omitting Paths
If you need to read only the data sets in a library, then because all of the necessary
path information is already in the metadata component files, you can specify the
LIBNAME statement without the extra DATAPATH= and INDEXPATH= options:

libname myref spde 'Mylib';

18 Chapter 2 / Creating and Loading SPD Engine Files

Renaming, Copying, or Moving Component Files
CAUTION
Do not rename, copy, or move an SPD Engine data set or its component files
using operating system commands.

You should always use the COPY procedure to copy SPD Engine data sets from
one location to another or the DATASETS procedure to rename or delete SPD
Engine data sets.

Efficiency Using Disk Striping and Large
Disk Arrays

Your system might have a file creation utility that enables you to override the file
system limitations and create file systems (volumes) greater than the space on a
single disk. You can use this utility to allocate SPD Engine libraries that span
multiple disk devices, such as RAID. RAID configurations use a technique called
disk striping that can significantly enhance I/O. For more information about disk
striping and RAID, see “SPD Engine Disk I/O Setup” in Scalability and Performance
at http://support.sas.com/rnd/scalability/spde/setup.html.

Note: If you are using Hadoop Distributed File System (HDFS) for storage, see
SAS SPD Engine: Storing Data in the Hadoop Distributed File System.

Converting Default Base SAS Engine
Data Sets to SPD Engine Data Sets

Using the COPY and APPEND Procedures
You can convert existing default Base SAS engine data sets to SPD Engine data
sets using the following methods:

n PROC COPY

n PROC APPEND

Converting Default Base SAS Engine Data Sets to SPD Engine Data Sets 19

http://support.sas.com/rnd/scalability/spde/setup.html

Some attributes are dropped when the data set is created in the SPD Engine format.
The following chart of file characteristics indicates whether the characteristic can be
retained or dropped or if conversion results in an error.

Table 2.1 Conversion Results for Base SAS Engine Data Set Characteristics

Base SAS Engine Data Set Characteristic Conversion Result

Indexes Rebuilt in SPD Engine (in parallel if
ASYNCINDEX=YES)

COMPRESS=YES | CHAR | BINARY Converts with compression if the data
set is not encrypted

ENCRYPT=YES | AES | AES2 If the default Base SAS engine data set
has both compression and encryption,
the compression is dropped, but the
encryption is retained. SAS retains the
security of the data set instead of the
compression.

AES2 encryption is converted to AES,
and a warning is written to the log.

Integrity constraints Dropped without error

Audit file Dropped with warning

Generations file Dropped with warning

Extended attributes Dropped with warning

Converting Default Base SAS Engine Data Sets
Using PROC COPY

To create an SPD Engine data set from an existing default Base SAS engine data
set, you can simply use the COPY procedure. The PROC COPY statement copies
the default Base SAS engine-formatted data set Local.Racquets to a new SPD
Engine-formatted data set Sport.Racquets:

libname sport spde 'conversion_area';

proc copy in=local out=sport;
 select racquets;
run;

Even though the indexes on the default Base SAS engine data set are automatically
regenerated as SPD Engine indexes (both .hdx and .idx files), they are not created
in parallel because the data set option ASYNCINDEX=NO is the default.

20 Chapter 2 / Creating and Loading SPD Engine Files

If an SPD Engine data set is encrypted, only the data component files are
encrypted. The metadata component files and both index component files are not
encrypted.

Converting Default Base SAS Engine Data Sets
Using PROC APPEND

Use the APPEND procedure when you need to specify data set options for a new
SPD Engine data set.

The following example creates an SPD Engine data set from a default Base SAS
engine data set using PROC APPEND. The ASYNCINDEX=YES data set option
specifies to build the indexes in parallel. The PARTSIZE= option specifies to create
partitions of 100 megabytes.

libname spdelib spde 'new_data';
libname somelib 'old_data';
proc append base=spdelib.cars (asyncindex=yes partsize=100)
 data=somelib.cars;
run;

Creating and Loading New SPD Engine
Data Sets

To create a new SPD Engine data set, you can use the DATA step, any PROC
statement1 with the OUT= option, or PROC SQL with the CREATE TABLE= option.

The following example uses the DATA step to create a new SPD Engine data set,
CARDATA.OLD_AUTOS in the report_area directory.

libname cardata spde '/report_area';

data cardata.old_autos(compress=no encrypt=yes pw=secret);
 input year $4. @6 manufacturer $12. @18 model $12. @31 body_style $5. @37
 engine_liters @42 transmission_type $1. @45 exterior_color
 $10. @55 mileage @62 condition;

datalines;

1966 Ford Mustang conv 3.5 M white 143000 2
1967 Chevrolet Corvair sedan 2.2 M burgundy 70000 3
1975 Volkswagen Beetle 2door 1.8 M yellow 80000 4
1987 BMW 325is 2door 2.5 A black 110000 3
1962 Nash Metropolitan conv 1.3 M red 125000 3
;

1. except PROC MIGRATE

Creating and Loading New SPD Engine Data Sets 21

run;

Note: Encryption and compression are mutually exclusive in SPD Engine. You can
use the ENCRYPT= option only when you are creating an SPD Engine data file that
is not compressed. You cannot create an SPD Engine data set with both encryption
and compression.

Updates to a Compressed SPD Engine
Data Set

When COMPRESS=YES | BINARY | CHAR, the SPD Engine compresses, by
blocks, the data component file as it is created. If you copy a default Base SAS
engine data set that is both compressed and encrypted, the encryption is retained,
but the compression is dropped.

Once a compressed data set is created, you cannot change its block size. The
compressed blocks are stored linearly, with no spaces between the blocks. The
following figure illustrates how the blocks are initially stored on the disk:

Figure 2.1 Compressed Blocks on the Disk

If updates to the data set after compression require more space than what is
available in a block, SPD Engine creates a new block fragment to hold the overflow.
If further updates again cause overflows, new block fragments are created, forming
a chain. The following figure illustrates how the updates create a chain of blocks on
the disk:

22 Chapter 2 / Creating and Loading SPD Engine Files

Figure 2.2 Compressed Blocks with Overflow

Performance is affected if the chains get too long. To remove the chains and resize
the block, you must copy the data set to a new data set. Specify IOBLOCKSIZE= on
page 88 to the block size appropriate for the output data set.

When the data set is expected to be updated frequently, it is recommended that you
use PADCOMPRESS= on page 93. SPD Engine creates a padded space for each
block, instead of creating new block fragments. The following figure illustrates how
each block has padded space for updates:

Figure 2.3 Compressed Padded Blocks

If updates to the data set after compression require more space than what is
available in a block, SPD Engine uses the padded space for each block. New block
fragments are not created. The following figure illustrates how the updates decrease
the padded space:

Figure 2.4 Compressed Padded Blocks with Updates

Updates to a Compressed SPD Engine Data Set 23

The CONTENTS procedure prints information about the compression. The following
example explains the compressed info fields in the CONTENTS procedure output:

Output 2.1 CONTENTS Procedure Compressed Info Output

Number of compressed blocks
number of compressed blocks that are required to store data.

Raw data blocksize
compressed block size in bytes calculated from the size specified in the
IOBLOCKSIZE= data set option.

Number of blocks with overflow
number of compressed blocks that needed more space. When data is updated
and the compressed new block is larger than the compressed old block, an
overflow block fragment is created.

Max overflow chain length
largest number of overflows for a single block. For example, the maximum
overflow chain length would be 2 if a compressed block was updated and
became larger, and then updated again to a larger size.

Block number for max chain
number of the block containing the largest number of overflow blocks.

Min overflow area
minimum amount of disk space that an overflow requires.

Max overflow area
maximum amount of disk space that an overflow requires.

Encrypting SPD Engine Data Sets

SPD Engine Encryption Overview
Encryption is the transformation of intelligible data (plain text) into an unintelligible
form (cipher text) by a mathematical process. The cipher text is translated back into

24 Chapter 2 / Creating and Loading SPD Engine Files

plain text when you apply the appropriate password or ENCRYPTKEY that is
necessary for decrypting (unlocking) the cipher text.

Encryption helps protect information on-disk and in-transit:

n Over-the-wire encryption protects SAS data while in transit.

n On-disk encryption protects data at rest.

There are two types of algorithms that SAS uses to encrypt SPD Engine data sets at
rest:

SAS Proprietary
provided within Base SAS software. This algorithm provides a medium level of
security. You use the ENCRYPT=YES data set option to invoke this encryption.

AES (Advanced Encryption Standard)
is a block cipher that encrypts data in blocks of 128 bits by using a 256-bit key.
You use SAS/SECURE software, which is included with default Base SAS
software. You use the ENCRYPT=AES data set option to invoke this encryption.

Table 2.2 SPD Engine Encryption Features

Features ENCRYPT=YES ENCRYPT=AES

License required No No

Encryption level Medium High

Algorithm supported within Base SAS
software

AES

Installation required No (part of Base SAS
software)

No (in SAS/SECURE,
which is included with
Base SAS software)

Operating environments
supported

UNIX

Windows

z/OS

UNIX

Windows

z/OS

SAS version support 8 and later 9.4 and later

SAS Proprietary Algorithm
SAS Proprietary uses a 32-bit fixed encoding and is appropriate only for preventing
accidental exposure of information. SAS Proprietary is licensed with Base SAS
software and is available in all deployments.

Encrypting SPD Engine Data Sets 25

AES Algorithm
The AES algorithm is a block cipher that encrypts data in blocks of 128 bits by using
a 256-bit key. AES encryption uses SAS/SECURE software, which is included with
Base SAS software. For more information about SAS/SECURE, see Encryption in
SAS.

Note: AES encryption is not supported in OpenVMS on 64-bit Itanium.

AES encryption, which provides enhanced encryption for SPD Engine data sets, is
available in SAS 9.4 and later. If you want an encrypted SPD Engine data set, you
must use the ENCRYPTKEY= data set option with ENCRYPT=AES when you
create the SPD Engine data set. The SPD Engine does not support
ENCRYPT=AES2.

Note: You cannot change the ENCRYPTKEY= value on an AES-encrypted SPD
Engine data set without re-creating the data set.

The following rules apply to AES encryption of SPD Engine data sets:

n You must use the ENCRYPTKEY= data set option when creating a data set with
AES encryption.

n To copy an AES-encrypted SPD Engine data set, the output engine must support
AES encryption. Otherwise, the data set is not copied.

n If a default Base SAS data set with AES2 encryption is copied to create a new
SPD Engine data set, the encryption converts to AES. A warning is written to the
log.

n Releases before SAS 9.4 cannot use an AES-encrypted SPD Engine data set.

n If the SPD Engine data sets are AES-encrypted, all associated index files are
also AES-encrypted. Metadata files are not AES-encrypted.

For more information, see “ENCRYPT= Data Set Option” on page 75 and
“ENCRYPTKEY= Data Set Option” on page 78 .

SPD Engine Component File Naming
Conventions

When you create an SPD Engine data set, many component files can also be
created. SPD Engine component files are stored with the following naming
conventions:

filename.mdf.0.p#.v#.spds9
filename.dpf.fuid.p#.v#.spds9

26 Chapter 2 / Creating and Loading SPD Engine Files

filename.idxsuffix.fuid.p#.v#.spds9
filename.hbxsuffix.fuid.p#.v#.spds9

filename
valid SAS filename.

mdf
identifies the metadata component file.

dpf
identifies the partitioned data component files.

p#
is the partition number.

v#
is the version number. 1

fuid
is the unique file ID, which is a hexadecimal equivalent of the primary (metadata)
path.

hbxsuffix
is one of two files for each index (if the table is indexed), where suffix is the
name of the index.

idxsuffix
is the second of the two files for each index (if the table is indexed), where suffix
is the name of the index.

spds9
denotes a SAS 9 SPD Engine component file.

Table 2.2 shows the data set component files that are created when you use this
LIBNAME statement and DATA step:

libname sample spde '/DATA01/SAS-library'
 datapath=('/DATA01/mydir' '/DATA02/mydir')
 indexpath=('/IDX1/mydir');
data sample.mine(index=(ssn));
 do i=1 to 100000;
 ssn=ranuni(0);
 end;
run;

Table 2.3 Data Set Component Files

mine.mdf.0.0.0.spds9 metadata component file

mine.dpf.000032a6.0.1.spds9 data file partition #1

mine.dpf.000032a6.1.1.spds9 data file partition #2

mine.dpf.000032a6.n-1.1.spds9 data file partition #n

mine.dpf.000032a6.n.1.spds9 data file partition #n+1

1. The version number increases only when the data set is updated, that is, when the data set is opened in UPDATE
mode. Operations such as PROC SORT that replace the data set reset the version number to one, instead of
incrementing it.

SPD Engine Component File Naming Conventions 27

mine.hbxssn.000032a6.0.1.spds9 index file for variable SSN

mine.idxssn.000032a6.0.1.spds9 index file for variable SSN

Efficient Indexing in the SPD Engine

Parallel Indexing
Indexes can improve the performance of WHERE expression processing and BY
expression processing. The SPD Engine enables the rapid creation and update of
indexes because it can process them in parallel.

The hybrid indexes of SPD Engine are appropriate for tables of varying sizes and
data distributions. Indexes can improve performance in use cases such as table
joins and WHERE clause evaluations.

Parallel Index Creation
You can create indexes on your SPD Engine data in parallel, asynchronously. To
enable asynchronous parallel index creation, use the “ASYNCINDEX= Data Set
Option” on page 64.

Use this option with the DATA step INDEX= option and with the PROC DATASETS
MODIFY statement when creating a data set that has several indexes. Either
method enables all of the declared indexes to be populated from a single scan of
the data set.

The following example shows indexes created in parallel using the DATA step. A
simple index is created on variable X and a composite index is created on variables
A and B.

data foo.mine(index=(x y=(a b)) asyncindex=yes);
 x=1;
 a="Doe";
 b=20;
run;

To create multiple indexes in parallel, you must allocate enough utility disk space to
create all of the key sorts at the same time. You must also allocate enough memory
space. Use the SPDEUTILLOC= system option on page 119 to allocate disk space
and SPDEINDEXSORTSIZE system option on page 116 in the configuration file or
at invocation to allocate additional memory.

The DATASETS procedure has the flexibility to enable batched parallel index
creation by using multiple MODIFY groups. Instead of creating all of the indexes at

28 Chapter 2 / Creating and Loading SPD Engine Files

once, which would require a significant amount of space, you can create the indexes
in groups as shown in the following example:

proc datasets lib=main;
 modify patients(asyncindex=yes);
 index create number;
 index create class;
 run;
 modify patients(asyncindex=yes)'
 index create lastname firstname;
 run;
 modify patients(asyncindex=yes);
 index create fullname=(lastname firstname);
 index create class_sex=(class sex);
 run;
quit;

Indexes Number and Class are created in parallel, indexes LastName and
FirstName are created in parallel, and indexes FullName and Class_Sex are
created in parallel.

Parallel Index Updates
The SPD Engine also supports parallel index updating during data set Append
operations. Multiple threads enable updates of the data store and index files. The
SPD Engine decomposes a data set Append or Insert operation into a set of steps
that can be performed in parallel. The level of parallelism attained depends on the
number of indexes in the data set. As with parallel index creation, this operation
uses memory and disk space for the key sorts that are part of the index append
processing. Use system options SPDEINDEXSORTSIZE= to allocate memory and
SPDEUTILLOC= to allocate disk space.

Note: The ASYNCINDEX option is not valid for parallel index updates.

Backing Up SPD Engine Files
When you back up an SPD Engine data set, remember the following requirements:

n Ensure that all of the files that make up the data set are backed up together, at
the same time, even if they reside on different disks or file systems.

n Do not back up the data set while any files are being updated.

n After each backup, run a test to verify that the backup was a success.

Backing Up SPD Engine Files 29

Storing SPD Engine Data in HDFS
The SPD Engine can read, write, and update data in HDFS. Storing SPD Engine
data in HDFS provides a low-cost alternative to storing big data. You can use the
SPD Engine with standard SAS applications to retrieve data for analysis, perform
administrative functions, and update data.

30 Chapter 2 / Creating and Loading SPD Engine Files

3
SPD Engine LIBNAME Statement

Introduction to the SPD Engine LIBNAME Statement . 31

Dictionary . 32
LIBNAME Statement: SPD Engine . 32
ACCESS= LIBNAME Statement Option . 33
BYSORT= LIBNAME Statement Option . 33
COMPRESS= LIBNAME Statement Option . 36
DATAPATH= LIBNAME Statement Option . 39
ENDOBS= LIBNAME Statement Option . 40
IDXBY= LIBNAME Statement Option . 42
INDEXPATH= LIBNAME Statement Option . 44
INENCODING= LIBNAME Statement Option . 45
IOBLOCKSIZE= LIBNAME Statement Option . 46
METAPATH= LIBNAME Statement Option . 48
PARTSIZE= LIBNAME Statement Option . 49
REPEMPTY= LIBNAME Statement Option . 51
STARTOBS= LIBNAME Statement Option . 52
TEMP= LIBNAME Statement Option . 54

Introduction to the SPD Engine
LIBNAME Statement

Specifying LIBNAME options for the SPD Engine is the same as specifying
LIBNAME options for the default Base SAS engine or SAS/ACCESS engines. This
section provides details about LIBNAME options that are used only with the SPD
Engine. The default Base SAS engine LIBNAME options that affect the SPD Engine
are also listed.

When using the options, remember that the value of the data set option overrides
the value of its corresponding LIBNAME option.

31

Dictionary

LIBNAME Statement: SPD Engine
Associates or disassociates a SAS library with a libref (a shortcut name) for the SPD Engine.

Valid in: Base SAS

Category: Data Access

See: To clear one or all librefs and list the characteristics of a SAS library, see the LIBNAME
statement in SAS Global Statements: Reference.

Syntax
LIBNAME libref SPDE 'full-primary-path' <options> ;

Other Argument Group

Note: Operating Environment Information: A valid library specification and its
syntax are specific to your operating environment. For details, see the SAS
documentation for your operating environment.

libref
a name that is up to eight characters long and that conforms to the rules for SAS
names.

'full-primary-path'
the complete pathname of the primary path for the SPD Engine library. The
name must be recognized by the operating environment. Enclose the name in
single or double quotation marks. Unless the DATAPATH= and INDEXPATH=
options are specified, the index and data components are stored in the same
location. The primary path must be unique for each library. Librefs that are
different but reference the same primary path are interpreted to be the same
library and can result in lost data.

options
one or more SPD Engine LIBNAME statement options.

Here is a list that contains reference information for all LIBNAME options that are
valid for the SPD Engine LIBNAME statement.

Some of these LIBNAME options are also data set options. As in the default
Base SAS engine, data set options take precedence over corresponding
LIBNAME options if both options are set.

32 Chapter 3 / SPD Engine LIBNAME Statement

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

ACCESS= LIBNAME Statement Option
Determines the access level of the data source.

Default: none

Engine: SPD Engine only

Syntax
ACCESS=READONLY

Required Argument
READONLY

specifies that data sets can be read, but not updated or created.

Details
Using this option prevents writing to the data source. If this option is omitted, data
sets can be read, updated, and created if you have the necessary data source
privileges.

BYSORT= LIBNAME Statement Option
Specifies the SPD Engine to perform an automatic sort when it encounters a BY statement.

Default: YES

Interaction: “BYNOEQUALS= Data Set Option” on page 66

Engine: SPD Engine only

Syntax
BYSORT=YES | NO

Required Arguments
YES

specifies to automatically sort the data based on the BY variables when a BY
statement is encountered instead of sorting the data ahead of time.

BYSORT= LIBNAME Statement Option 33

NO
specifies not to sort the data based on the BY variables. Specifying NO means
that the data must already be sorted before the BY statement. Indexes are not
used.

Note: Indexes are not used when BYSORT=NO is set.

Details
DATA or PROC step processing using the default Base SAS engine requires that if
there is no index or if the observations are not in order, the data set must be sorted
before a BY statement is issued. In contrast, by default, the SPD Engine sorts the
data returned to the application if the observations are not in order. Unlike PROC
SORT, which creates a new sorted data set, the SPD Engine's automatic sort does
not change the permanent data set and does not create a new data set. However,
utility file space is used. For more information, see “SPDEUTILLOC System Option”
on page 119.

The default is BYSORT=YES. A BYSORT=YES argument enables the automatic
sort, which generates the output for the observations in BY group order. If the data
set option BYNOEQUALS=YES, then the observations within a group might be
written in a different order from the order in the data set. Set BYNOEQUALS=NO to
retain data set order.

The BYSORT=NO argument instructs the engine to do nothing to sort the data. The
BYSORT=NO argument means that the data must already be sorted before the BY
statement. Sorting can be from a previous PROC SORT or from the data set having
been created in BY variable order. An error occurs if the data set is not sorted.

When BYSORT=NO, grouped data is delivered to the application in data set order.
Indexes are not used to retrieve the observations in BY variable order. The data set
option BYNOEQUALS= has no effect when BYSORT=NO.

If you specify the BYSORT= option in the LIBNAME statement, it can be overridden
by specifying BYSORT= in the PROC or DATA steps. Set BYSORT=YES in the
DATA or PROC step, for input opens, to override BYSORT=NO in the LIBNAME
statement. Add BYSORT=YES as a data set option on the step for which you need
to use a BY statement that has an index associated with it.

When you use the BYSORT=YES and the IDXWHERE= data set options, the
following messages are written to the SAS log if you set the MSGLEVEL=I SAS
system option:

n If IDXWHERE=YES and there is an index on the BY variable, the index is used
to order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for table tablename.

n If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY
variable, SPD Engine performs an automatic sort to order the rows of the table.
The following message is written to the SAS log:

Note: BY ordering was produced by performing an automatic
sort on table tablename.

34 Chapter 3 / SPD Engine LIBNAME Statement

Comparisons
The BYSORT= data set option overrides the BYSORT= LIBNAME statement option.

Examples

Example 1: Group Formatting with BYSORT=YES
by Default
libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;
proc print data=growth.teens; by sex;
run;

Even though the data was not sorted using PROC SORT, no error occurred
because BYSORT=YES is the default. The output is shown:

BYSORT= LIBNAME Statement Option 35

Output 3.1 Group Formatting with BYSORT=YES by Default

Example 2: Using BYSORT=NO in the LIBNAME
Statement
In the following example, SAS returns an error because BYSORT=YES was not
specified on the DATA or PROC steps to override the BYSORT=NO specification in
the LIBNAME statement. Whenever automatic sorting is suppressed
(BYSORT=NO), the data must be sorted on the BY variable before the BY
statement (for example, by using PROC SORT).

libname growth spde 'SAS-library' bysort=no;
proc print data=growth.teens;
by sex;
run;

ERROR: Data set GROWTH.TEENS is not sorted in ascending sequence.
 The current by-group has Sex = M and the next by-group has Sex = F.
NOTE: The SAS System stopped processing this step because of errors.

COMPRESS= LIBNAME Statement Option
Specifies to compress an SPD Engine data set on disk as it is being created.

Restriction: Cannot be used with ENCRYPT=YES or ENCRYPT=AES

36 Chapter 3 / SPD Engine LIBNAME Statement

Interactions: “IOBLOCKSIZE= LIBNAME Statement Option” on page 46
“PADCOMPRESS= Data Set Option” on page 93

Engine: SPD Engine only

Syntax
COMPRESS=NO | CHAR | BINARY

Required Arguments
NO

performs no data set compression.

CHAR
specifies that data in an SPD Engine data set be compressed in blocks by using
RLE (run-length encoding). RLE compresses data by reducing repeated runs of
the same character (including a blank space) to two-byte or three-byte
representations.

Alias YES

BINARY
specifies that data in an SPD Engine data set be compressed in blocks by using
RDC (Ross Data Compression). RDC combines RLE and sliding window
compression to compress the file by representing repeated byte patterns more
efficiently.

Note: This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (character and numeric variables).

Details

When you specify COMPRESS=YES | BINARY | CHAR, the SPD Engine
compresses, by blocks, the data component file as it is created. To specify the size
of the compressed blocks, use the “IOBLOCKSIZE= Data Set Option” on page 88
when you create the data set. To add padding to the newly compressed blocks,
specify “PADCOMPRESS= Data Set Option” on page 93 when creating or
updating the data set. For more information, see “Updates to a Compressed SPD
Engine Data Set” on page 22.

If you are migrating a default Base SAS engine data set that is both compressed
and encrypted, the encryption is retained, but the compression is dropped.

The CONTENTS procedure identifies the compress setting. If the data set is
compressed, PROC CONTENTS prints information about the compression. The
following example explains the Compressed Info fields in the CONTENTS
procedure output:

COMPRESS= LIBNAME Statement Option 37

In general, COMPRESS=CHAR provides good compression when single bytes
repeat; COMPRESS=BINARY provides good compression when strings of bytes
repeat. At the same time, it is more costly to look for strings of bytes that repeat,
than to look for single bytes that repeat. For examples, see “Example 1:
COMPRESS=CHAR” on page 75 and “Example 2: COMPRESS=BINARY” on
page 75.

Output 3.2 PROC CONTENTS Compressed Section

Number of compressed blocks
number of compressed blocks that are required to store data.

Raw data blocksize
compressed block size in bytes calculated from the size specified in the
IOBLOCKSIZE= data set option. It is the largest multiple of the observation
length that fits in the block size.

Number of blocks with overflow
number of compressed blocks that needed more space. When data is updated
and the compressed new block is larger than the compressed old block, an
overflow block fragment is created.

Max overflow chain length
largest number of overflows for a single block. For example, the maximum
overflow chain length would be 2 if a compressed block was updated and
became larger, and then updated again to a larger size.

Block number for max chain
number of the block containing the largest number of overflow blocks.

Min overflow area
minimum amount of disk space that an overflow requires.

Max overflow area
maximum amount of disk space that an overflow requires.

Accessing compressed files usually requires more processing time. The files have
to be decompressed before reading them and, if updating, they have to be
compressed again when written to disk.

38 Chapter 3 / SPD Engine LIBNAME Statement

Comparisons
The COMPRESS= LIBNAME statement option overrides the COMPRESS= system
option.

The COMPRESS= data set option overrides the COMPRESS= LIBNAME statement
option.

If the COMPRESS= data set option or LIBNAME statement option is not set, then
the value of the COMPRESS= system option is used. The COMPRESS= system
option default value is NO.

DATAPATH= LIBNAME Statement Option
Specifies a list of paths in which to store data partitions (.dpf) for an SPD Engine data set.

Default: The primary path specified in the LIBNAME statement

Interactions: If cross-environment data access (CEDA) is used, data files that are in a DATAPATH=
location might not be accessible. See “Accessing SPD Engine Files on Another Host” on
page 3.
“PARTSIZE= LIBNAME Statement Option” on page 49
“PARTSIZE= Data Set Option” on page 94

Engine: SPD Engine Only

Syntax
DATAPATH=('path1' <'path2'>…)

Required Argument
'path'

is a complete pathname in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Note: The pathnames specified in the DATAPATH= option must be unique for
each library. Librefs that are different but reference the same pathnames can
result in lost data.

Note: If your data is in the zFS file system, only one path specification is
required. The zFS system automatically spreads the partitions across multiple
logical volumes.

DATAPATH= LIBNAME Statement Option 39

Details
The SPD Engine creates as many partitions as needed to store all the data. The
size of the partitions is set using the PARTSIZE= option, and partitions are created
in the paths specified using the DATAPATH= option in a cyclic fashion.

Note: If you are planning to store data in locally mounted drives and access the
data from a remote computer, use the remote pathname when you specify the
LIBNAME. For example, if /data01 and /data02 are locally mounted drives on the
localA computer, use the pathnames /nfs/localA/data01 and /nfs/localA/
data02 in the LIBNAME statement.

Example: DATAPATH= for First Partition
The path for the first partition is randomly selected and then continues in a cyclical
fashion:

libname mylib spde '/metadisk/metadata'
 datapath=('/disk1/dataflow1' '/disk2/dataflow2' '/disk3/dataflow3');

For example, if /disk2/dataflow2 is randomly selected as the first path, the first
partition is located there. The second partition is located in /disk3/dataflow3, the
third partition is located in /disk1/dataflow1, and so on.

ENDOBS= LIBNAME Statement Option
Specifies the end observation number in a user-defined range of observations to be processed.

Default: The last observation in the data set

Restrictions: Use ENDOBS= with input data sets only
Cannot be used with the OBS= system or data set option or the FIRSTOBS= system or
data set option

Interactions: “ENDOBS= Data Set Option” on page 81
“STARTOBS= LIBNAME Statement Option” on page 52
“STARTOBS= Data Set Option” on page 96

Engine: SPD Engine only

Syntax
ENDOBS=n

40 Chapter 3 / SPD Engine LIBNAME Statement

Required Argument
n

is the number of the end observation.

Details
By default, the SPD Engine processes all of the observations in the entire data set
unless you specify a range of observations with the STARTOBS= and ENDOBS=
options. If the STARTOBS= option is used without the ENDOBS= option, the implied
value of ENDOBS= is the end of the data set. When both options are used together,
the value of ENDOBS= must be greater than the value of STARTOBS=.

In contrast to the default Base SAS engine option FIRSTOBS=, the STARTOBS=
and ENDOBS= SPD Engine system options can be used in the LIBNAME
statement.

Note: The OBS= system option and the OBS= data set option cannot be used with
STARTOBS= or ENDOBS= data set or LIBNAME options.

(See SPD Engine Data Set Options on page 58 for information about using the
ENDOBS= data set option in WHERE processing.)

Comparisons
The ENDOBS= data set option overrides the ENDOBS= LIBNAME statement
option.

Example: Using the ENDOBS= LIBNAME
Statement Option
The following example shows that the STARTOBS= and ENDOBS= options subset
the data before the WHERE clause executes. The example prints the four
observations that were qualified by the WHERE expression (age >13 in PROC
PRINT). The four observations are out of the five observations that were processed
from the input data set:

libname growth spde 'SAS-library' endobs=5;
data growth.teens;
 input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0

ENDOBS= LIBNAME Statement Option 41

William M 15 66.5 112.0
;
proc print data=growth.teens;
 where age >13;
run;

Output 3.3 ENDSOBS=

IDXBY= LIBNAME Statement Option
Specifies whether to use an index when processing a BY statement in the SPD Engine.

Default: YES

Interactions: “BYSORT= LIBNAME Statement Option” on page 33
“BYSORT= Data Set Option” on page 69

Engine: SPD Engine only

Syntax
IDXBY=YES | NO

Required Arguments
YES

uses an index when processing indexed variables in a BY statement.

Note: If the BY statement specifies more than one variable or the
DESCENDING option, then the index is not used, even if IDXBY=YES.

NO
does not use an index when processing indexed variables in a BY statement.

Note IDXBY=NO performs an automatic sort when processing a BY statement.

42 Chapter 3 / SPD Engine LIBNAME Statement

Details
When you use the IDXBY= LIBNAME option, make sure that you use
BYSORT=YES option and that the BY variable is indexed.

In some cases, you might get better performance from the SPD Engine if you
automatically sort the data. To use the automatic sort, BYSORT=YES must be set
and you should specify IDXBY=NO.

Set the SAS system option MSGLEVEL=I so that the BY processing information is
written to the SAS log. When you use the IDXBY= LIBNAME option and the
BYSORT=YES option, the following messages are written to the SAS log:

n If IDXBY=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

 NOTE: BY ordering was produced by using an index for
 table tablename.

n If you use IDXBY=NO, the following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
 on table tablename.

Comparisons
The IDXBY= data set option overrides the IDXBY= LIBNAME statement option.

Examples

Example 1: Using the IDXBY=NO LIBNAME Option
libname permdata spde 'SAS-library' idxby=no;
options msglevel=i;
 proc means data=permdata.customer;
 var sales;
 by state;
 run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
 on table PERMDATA.customer.
NOTE: There were 100 observations read from the data
 set PERMDATA.CUSTOMER.

Example 2: Using the IDXBY=YES LIBNAME Option
The following example uses IDXBY=YES:

libname permdata spde 'SAS-library' idxby=yes;

IDXBY= LIBNAME Statement Option 43

options msglevel=i;
 proc means data=permdata.customer;
 var sales;
 by state;
run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by using an index for table
 PERMDATA.customer.
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER.

INDEXPATH= LIBNAME Statement Option
Specifies a path or list of paths in which to store the two types of index component files (.hbx and .idx)
associated with an SPD Engine data set.

Default: The primary path specified in the LIBNAME statement

Interaction: If cross-environment data access (CEDA) is used, and indexes are in an INDEXPATH=
location, you might not be able to delete the data set. See “Accessing SPD Engine Files
on Another Host” on page 3.

Engine: SPD Engine only

Syntax
INDEXPATH=('path1' <'path2'…>)

Required Argument
'path'

is a complete pathname, in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Note: The pathnames specified in the INDEXPATH= option must be unique for
each library. Librefs that are different but reference the same pathnames can
result in lost data.

Details
Unlike metadata component files, index component files do not have to be in the
primary path. For more information, see “Storage of the Index Component Files” on
page 17.

44 Chapter 3 / SPD Engine LIBNAME Statement

The INDEXPATH= option enables index I/O to be moved to another physical path or
device. This enhances performance. For more information, see “Features That
Enhance I/O Performance” on page 10.

The SPD Engine creates two index component files in the locations specified. If
there are multiple paths specified with the INDEXPATH= option, the first path is
randomly selected. If multiple paths are specified, index component files are created
in the first path, and then they overflow to the next path when the first path is filled.

Note: If you are planning to store data in locally mounted drives and access the
data from a remote computer, use the remote pathname when you specify the
LIBNAME. For example, if /data01 and /data02 are locally mounted drives on the
localA computer, use the pathnames /nfs/localA/data01 and /nfs/localA/
data02 in the LIBNAME statement.

Example: Creating Index Component Files
The following example creates index component files that span the paths /disk1/
idxflow1, /disk2/idxflow2, and /disk3/idxflow3.

libname mylib spde '/metadisk/metadata'
 datapath= ('/disk1/dataflow1' '/disk2/dataflow2'
 '/disk3/dataflow3')
 indexpath=('/disk1/idxflow1' '/disk2/idxflow2'
 '/disk3/idxflow3');

The path for the first index component files is randomly selected. SAS puts the
index component files in the first location until that location is full, and then
continues in a cyclical fashion. For example, if /disk2/idxflow2 is randomly selected,
the first index component files are located there. When that location is full, the index
component files overflow to /disk3/idxflow3, and then to /disk1/idxflow1.

INENCODING= LIBNAME Statement Option
Overrides and changes the encoding when reading or writing SAS data sets in the SAS library.

Valid in: SPD Engine LIBNAME statement

Requirement: To use this option in SAS Viya 3.5 or in SAS 9.4M6, you must apply a hot fix.

Engine: SPD Engine only

Note: The SPD Engine INENCODING option does not function the same way as the Base
SAS INENCODING option.

Syntax
INENCODING=ANY | ASCIIANY | EBCDICANY | encoding-value

INENCODING= LIBNAME Statement Option 45

Summary of Optional Arguments
ANY
ASC11ANY
EBCDICANY
encoding-value

Optional Arguments
ANY

specifies no transcoding between ASCII and EBCDIC encodings.

Alias BINARY

Note ANY is a synonym for binary. Because the data is binary, the actual
encoding is irrelevant.

ASC11ANY
specifies that no transcoding occurs, assuming that the mixed encodings are
ASCII encodings.

EBCDICANY
specifies that no transcoding occurs, assuming that the mixed encodings are
EBCDIC encodings.

encoding-value
specifies an encoding value. For a list of encoding values, see “Encoding Values
in SAS Language Elements” in SAS National Language Support (NLS):
Reference Guide.

Details
Note: To use the INENCODING option in SAS Viya 3.5, you must apply a hot fix.

The INENCODING= option is used to read SAS data sets in the SAS library.

The INENCODING= value is written to the SAS log when you use the LIST
argument.

INENCODING= option is most appropriate when using an existing library that
contains mixed encodings. To read a library that contains mixed encodings, you can
set INENCODING= to ASCIIANY or EBCDICANY.

IOBLOCKSIZE= LIBNAME Statement Option
Specifies the size in bytes of a block of observations to be used in an I/O operation.

Default: 1,048,576 bytes (1 megabyte)

46 Chapter 3 / SPD Engine LIBNAME Statement

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

Range: The minimum block size is 32,768 bytes. The maximum block size is half the size of the
SPD Engine data partition file.

Engine: SPD Engine only

Tip: When reading a data set, the block size can significantly affect performance. When
retrieving a large percentage of the data, a larger block size improves performance.
However, when retrieving a subset of the data such as with WHERE processing, a
smaller block size performs better.

Syntax
IOBLOCKSIZE=n

Required Argument
n

is the size in bytes of a block of observations.

Details
The I/O block size determines the amount of data that is physically transferred
together in an I/O operation. The SPD Engine uses blocks in memory to collect the
rows to be written to or read from a data component file. The IOBLOCKSIZE=
option specifies the size of the block, but the actual size is computed to
accommodate the largest number of rows that fit in the specified size of n bytes.
Therefore, the actual size is a multiple of the row length. If you set IOBLOCKSIZE=
too small to fit two rows, an error is written to the log and the data set is not created.

In a very general sense, the larger the block size, the less I/O. The performance for
reading data depends on the I/O operation in the following ways:

n Large blocks are more efficient for sequential I/O. An example of sequential I/O
is a PRINT procedure that reads a full data set.

n Small blocks are more efficient for random I/O. An example of random I/O is a
BY clause with an index on a data set that is not already sorted on the BY
variable. Small blocks can also be more efficient for I/O that is not completely
sequential. An example is the SUMMARY procedure, which does not perform a
full sequential read.

If you are not certain whether a large or small block size is best, you are
encouraged to run performance tests.

If you process a data set in multiple ways, you can specify a different block size
based on the operation that you are performing. This feature is available for data
sets that are not compressed or encrypted. The details are as follows.

Compressed or encrypted data set
IOBLOCKSIZE= determines how many rows are compressed or encrypted
together, which determines the amount of data that is physically transferred for
both reading and writing. The block size is a permanent attribute of the data set.
To specify a different block size, you must copy the data set to a new data set,
and specify a new block size for the new data set. It is possible to specify a

IOBLOCKSIZE= LIBNAME Statement Option 47

different IOBLOCKSIZE= for the Read operation, but that block size affects only
the output operation (the results of processing that are returned to the user) and
does not affect the size of blocks that are read from disk. Therefore, specifying
the same block size for creation and reading usually provides the best
performance. When you first create a data set, follow the general guidelines for
the majority of its intended use (sequential or random I/O). For random I/O on a
compressed data set, use the minimum value during both data set creation and
reading.

Not compressed or encrypted
For a data set that is not compressed or encrypted, IOBLOCKSIZE= is not a
permanent attribute of the data set. For an uncompressed data set, the block
size determines the size of the blocks that are used to read the data from disk to
memory. The block size has no effect when writing data to disk. Therefore, you
can specify a different block size based on the Read operation that you perform.

For details about the interaction between IOBLOCKSIZE= and PADCOMPRESS=,
see “Updates to a Compressed SPD Engine Data Set” on page 22.

Comparisons
The IOBLOCKSIZE= data set option overrides the IOBLOCKSIZE= LIBNAME
statement option.

Example: Using IOBLOCKSIZE=
/*IOBLOCKSIZE set to 64K */
libname employees spde ‘SAS-library’ ioblocksize=65536;

/*IOBLOCKSIZE set to 512M */
libname sales spde ‘SAS-library’ ioblocksize= 524288;

METAPATH= LIBNAME Statement Option
Specifies a list of paths in which to store overflow metadata (.mdf) component files for an SPD Engine data
set.

Engine: SPD Engine only

Syntax
METAPATH=('path1' <'path2'…>)

48 Chapter 3 / SPD Engine LIBNAME Statement

Required Argument
'path'

is a complete pathname in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Details
The metadata component files for all of the data sets in a library must reside in the
same location specified in the primary path. If a new data set for a library is created,
and the space in the primary path is full, the SPD Engine cannot begin creating the
metadata component file in the primary path. The Create operation fails with an
appropriate error message. For more information, see “Storage of the Metadata
Component Files” on page 16.

The METAPATH= option specifies space that is exclusively overflow space for
metadata component files. The metadata component file for each data set must
reside in the primary path. Overflow populates the METAPATH= location when the
primary path is full.

Note: If you are planning to store data in locally mounted drives and access the
data from a remote computer, use the remote pathname when you specify the
LIBNAME. If /data01 and /data02 are locally mounted drives on the localA
computer, use the pathnames /nfs/localA/data01 and /nfs/localA/data02 in
the LIBNAME statement.

PARTSIZE= LIBNAME Statement Option
Specifies the maximum size (in megabytes, gigabytes, or terabytes) that the data component partitions can
be. The value is specified when an SPD Engine data set is created. This size is a fixed size. This
specification applies only to the data component files.

Default: 128 megabytes

Range: 16 megabytes to 8,796,093,022,207 megabytes. You can change the lower limit by
setting the MINPARTSIZE= system option.

Interactions: “DATAPATH= LIBNAME Statement Option” on page 39
“MINPARTSIZE System Option” on page 115
If you set MINPARTSIZE= larger than the PARTSIZE= default, then you must specify
PARTSIZE= equal to or larger than MINPARTSIZE=.

Engine: SPD Engine only

Syntax
PARTSIZE=n | nM | nG | nT

PARTSIZE= LIBNAME Statement Option 49

Required Argument
n | nM | nG | nT

is the size of the partition in megabytes, gigabytes, or terabytes. If n is specified
without M, G, or T, the default is megabytes. PARTSIZE=128 is the same as
PARTSIZE=128M. The maximum value is 8,796,093,022,207 megabytes.

Restriction This restriction applies only to 32-bit hosts with the following
operating systems: z/OS, Linux SLES 9 x86, and the Windows
family. If you create a data set with a partition size greater than or
equal to 2 gigabytes, you cannot open the data set with any version
of SPD Engine prior to SAS 9.2. The following error message is
written to the SAS log: ERROR: Unable to open data file
because its data representation differs from the SAS
session data representation.

Details
SPD Engine data must be stored in multiple partitions for it to be subsequently
processed in parallel. Specifying PARTSIZE= forces the software to partition SPD
Engine data files at the specified size. The actual size of the partition is computed to
accommodate the maximum number of observations that fit in the specified size of n
megabytes, gigabytes, or terabytes.

By splitting (partitioning) the data portion of an SPD Engine data set into fixed-sized
files, the software can introduce a high degree of scalability for some operations.
The SPD Engine can spawn threads in parallel (for example, up to one thread per
partition for WHERE evaluations). Separate data partitions also enable the SPD
Engine to process the data without the overhead of file access contention between
the threads. Because each partition is one file, the trade-off for a small partition size
is that an increased number of files (for example, UNIX i-nodes) are required to
store the observations.

Scalability limitations using PARTSIZE= depend on how you configure and spread
the file systems specified in the DATAPATH= option across striped volumes. (You
should spread each individual volume's striping configuration across multiple disk
controllers or SCSI channels in the disk storage array.) The goal for the
configuration is to maximize parallelism during data retrieval. For information about
disk striping, see “I/O Setup and Validation” under “SPD Engine” in Scalability and
Performance at http://support.sas.com/rnd/scalability.

The PARTSIZE= specification is limited by the SPD Engine system option
MINPARTSIZE=, which is usually set and maintained by the system administrator.
MINPARTSIZE= ensures that an inexperienced user does not arbitrarily create small
partitions, thereby generating a large number of files.

The partition size determines a unit of work for many of the parallel operations that
require full data set scans. But, more partitions does not always mean faster
processing. The trade-offs involve balancing the increased number of physical files
(partitions) required to store the data set against the amount of work that can be
done in parallel by having more partitions. More partitions means more open files to
process the data set, but a smaller number of observations in each partition. A
general rule is to have 10 or fewer partitions per data path and 3 to 4 partitions per
CPU.

50 Chapter 3 / SPD Engine LIBNAME Statement

http://support.sas.com/rnd/scalability

To determine an adequate partition size for a new SPD Engine data set, you should
be aware of the following:

n the types of applications that run against the data

n how much data you have

n how many CPUs are available to the applications

n which disks are available for storing the partitions

n the relationships of these disks to the CPUs

For example, if each CPU controls only one disk, then an appropriate partition size
would be one in which each disk contains approximately the same amount of data. If
each CPU controls two disks, then an appropriate partition size would be one in
which the load is balanced. Each CPU does approximately the same amount of
work.

Note: The PARTSIZE= value for a data set cannot be changed after a data set is
created. To change PARTSIZE=, you must re-create the data set and specify a
different PARTSIZE= value in the LIBNAME statement or on the new (output) data
set.

Comparisons
The PARTSIZE= data set option overrides the PARTSIZE= LIBNAME statement
option.

Example: Specifying the Partition Size
When you specify the partition size in the LIBNAME statement, you have to select a
size that is appropriate for most of the data sets stored in that library. For example,
suppose you have an 8-disk configuration. The smallest data set has 20 gigabytes
of data, the largest has 50 gigabytes of data, and the remaining data sets have 36
gigabytes of data each. A partition size of 1250M is optimal for a 36-gigabyte data
set (four partitions per disk). The 20-gigabyte data set uses two partitions per disk,
and the 50-gigabyte data set uses five partitions per disk.

libname sales spde '/primdisk' partsize=1250M
datapath=('/disk01' '/disk02' '/disk03' '/disk04'
'/disk05' '/disk06' '/disk07' '/disk08');

REPEMPTY= LIBNAME Statement Option
Controls replacement of a data set when the new data set is empty.

Default: YES

Interaction: If REPLACE=NO, the REPEMPTY= option is ignored.

REPEMPTY= LIBNAME Statement Option 51

Syntax
REPEMPTY=YES | NO

Required Arguments
YES

specifies that a new, empty data set can replace an existing data set with the
same name.

TIP To avoid overwriting existing data sets with new, empty data sets
that are created by mistake, set REPEMPTY=NO.

NO
specifies that a new, empty data set cannot replace an existing data set with the
same name.

Details
The following example code shows a common syntax error that creates an empty
data set. If mylib.test exists already and the defaults, REPLACE=YES and
REPEMPTY=YES, are in effect, then the existing data set is replaced by a new,
empty data set.

data mylib.test;
run;

To prevent this error, set REPEMPTY=NO.

WARNING: Data set MYLIB.TEST was not replaced because REPEMPTY=NO
 and the replacement file is empty.

Comparisons
The data set option takes precedence over the LIBNAME statement option.

See Also
“REPEMPTY= Data Set Option” in SAS Data Set Options: Reference

STARTOBS= LIBNAME Statement Option
Specifies the starting observation number in a user-defined range of observations to be processed.

52 Chapter 3 / SPD Engine LIBNAME Statement

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0nmr4kvvacy4hn1ouoflb8ro435.htm&locale=en

Default: The first observation in the data set

Restrictions: Use STARTOBS= with input data sets only
Cannot be used with the OBS= system or data set option or with the FIRSTOBS=
system or data set option

Interactions: “STARTOBS= Data Set Option” on page 96
“ENDOBS= LIBNAME Statement Option” on page 40
“ENDOBS= Data Set Option” on page 81

Engine: SPD Engine only

Syntax
STARTOBS=n

Required Argument
n

is the number of the starting observation.

Details
By default, the SPD Engine processes all of the observations in the entire data set
unless you specify a range of observations with the STARTOBS= and ENDOBS=
options. If the ENDOBS= option is used without the STARTOBS= option, the implied
value of STARTOBS= is 1. When both options are used together, the value of
STARTOBS= must be less than the value of ENDOBS=.

In contrast to the default Base SAS engine option FIRSTOBS=, the STARTOBS=
and ENDOBS= SPD Engine options can be used in the LIBNAME statement.

Note: FIRSTOBS= default Base SAS engine option is not supported by the SPD
Engine. The OBS= system option and the OBS= data set option cannot be used
with STARTOBS= or ENDOBS= data set or LIBNAME options.

(See SPD Engine Data Set Options on page 58 for information about using the
STARTOBS= data set option in WHERE processing.)

Comparisons
The STARTOBS= data set option overrides the STARTOBS= LIBNAME statement
option.

STARTOBS= LIBNAME Statement Option 53

Example: Using the WHERE Expression
The following example prints the five observations that were qualified by the
WHERE expression (age >13 in PROC PRINT). The five observations are out of the
six observations that were processed, starting with the second observation in the
data set:

libname growth spde 'SAS-library' startobs=2;
data growth.teens;
 input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;
proc print data=growth.teens;
 where age >13;
run;

The output is shown:

Output 3.4 STARTOBS=

TEMP= LIBNAME Statement Option
Specifies to store the library in a temporary subdirectory of the primary path.

Default: NO

Engine: SPD Engine only

54 Chapter 3 / SPD Engine LIBNAME Statement

Syntax
TEMP=YES | NO

Required Arguments
YES

specifies to create the temporary subdirectory.

NO
specifies not to create a temporary subdirectory.

Details
The TEMP= option creates a temporary subdirectory of the primary directory that
was named in the LIBNAME statement. The subdirectory and all component files
are deleted at the end of the session.

You can use TEMP= with the SAS option USER= to store temporary data sets that
can be referenced with a single-level name.

Note: When using the SIGNON statement in SAS/CONNECT software, the
INHERITLIB= option cannot refer to an SPD Engine library that was defined with the
TEMP= option.

Example: Creating a Temporary Library
The following example illustrates two features:

n the use of the TEMP= LIBNAME option to create a temporary library

n the use of the USER= system option to enable the use of single-level table
names for SPD Engine tables

For the temporary table q1temp, the metadata file is created in a temporary
subdirectory of /data01. The data and index for q1temp are created in the locations
specified in the DATAPATH= and INDEXPATH= options.

libname perm spde '/permanent-pathname';
libname mywork spde /data01'
 datapath=('/data02' '/data03')
 indexpath=('data04') temp=yes;
option user=mywork;
data q1temp (index=(lastname));
 set perm.q1;
 where region='W';
run;

TEMP= LIBNAME Statement Option 55

56 Chapter 3 / SPD Engine LIBNAME Statement

4
SPD Engine Data Set Options

Introduction to SPD Engine Data Set Options . 58

Syntax . 58

SPD Engine Data Set Options List . 58

SAS Data Set Options That Behave Differently with the SPD
Engine Than with the Default Base SAS Engine . 60

SAS Data Set Options Not Supported by the SPD Engine . 60

Dictionary . 61
ALIGN= Data Set Option . 61
ASYNCINDEX= Data Set Option . 64
BYNOEQUALS= Data Set Option . 66
BYSORT= Data Set Option . 69
COMPRESS= Data Set Option . 72
ENCRYPT= Data Set Option . 75
ENCRYPTKEY= Data Set Option . 78
ENDOBS= Data Set Option . 81
IDXBY= Data Set Option . 84
IDXWHERE= Data Set Option . 86
IOBLOCKSIZE= Data Set Option . 88
LISTFILES= Data Set Option . 90
PADCOMPRESS= Data Set Option . 93
PARTSIZE= Data Set Option . 94
STARTOBS= Data Set Option . 96
SYNCADD= Data Set Option . 100
THREADNUM= Data Set Option . 103
UNIQUESAVE= Data Set Option . 104
WHERENOINDEX= Data Set Option . 107

57

Introduction to SPD Engine Data Set
Options

Specifying data set options for the SPD Engine is the same as specifying data set
options for the default Base SAS engine or SAS/ACCESS engines. This section
provides details about data set options that are used only with the SPD Engine. The
default Base SAS engine data set options that affect the SPD Engine are also listed.

When using the options, remember that the value of the data set option overrides
the value of its corresponding LIBNAME option.

Syntax
(option-1=value-1 <(option-2=value-2>...)

specifies a data set option in parentheses after a SAS data set name. To specify
several data set options, separate them with spaces.

SPD Engine Data Set Options List
ALIGN=

specifies variable alignment.

ASYNCINDEX=
specifies to create indexes in parallel when creating multiple indexes on an SPD
Engine data set.

BYNOEQUALS=
specifies the index output order of data set observations that have identical
values for the BY variable.

BYSORT=
specifies the SPD Engine to perform an automatic sort when it encounters a BY
statement. BYSORT= is also a LIBNAME statement option.

COMPRESS=
specifies to compress SPD Engine data sets on disk as they are being created.
COMPRESS= is also a LIBNAME statement option.

Note: Compression and encryption are mutually exclusive in the SPD Engine.

58 Chapter 4 / SPD Engine Data Set Options

ENCRYPT=
specifies whether to encrypt an output SPD Engine data set.

Note: Compression and encryption are mutually exclusive in the SPD Engine.

ENCRYPTKEY=
specifies the key value for AES encryption.

ENDOBS=
specifies the end observation number in a user-defined range of observations to
be processed. ENDOBS= is also a LIBNAME statement option.

IDXBY=
specifies whether to use an index when processing a BY statement in the SPD
Engine. IDXBY= is also a LIBNAME statement option.

IDXWHERE=
specifies whether to use an index when processing a WHERE expression in the
SPD Engine.

IOBLOCKSIZE=
specifies the size in bytes of a block of observations to be compressed.
IOBLOCKSIZE= is also a LIBNAME statement option.

LISTFILES=
specifies whether the CONTENTS procedure lists the complete pathnames of all
of the component files in an SPD Engine data set.

PADCOMPRESS=
specifies the number of bytes to add to compressed blocks in a data set opened
for OUTPUT or UPDATE.

PARTSIZE=
specifies the maximum size that the data component partitions can be.
PARTSIZE= is also a LIBNAME statement option.

REPEMPTY=
controls replacement of a data set when the new data set is empty.

STARTOBS=
specifies the starting observation number in a user-defined range of
observations to be processed. STARTOBS= is also a LIBNAME statement
option.

SYNCADD=
specifies to process one observation at a time or a block of observations at a
time.

THREADNUM=
specifies the maximum number of threads to use for SPD Engine processing.

UNIQUESAVE=
specifies to save (in a separate file) any observations that were rejected because
of nonunique key values during an append or insert to a data set with unique
indexes when SYNCADD=NO.

WHERENOINDEX=
specifies a list of indexes to exclude when making WHERE expression
evaluations.

SPD Engine Data Set Options List 59

SAS Data Set Options That Behave
Differently with the SPD Engine Than
with the Default Base SAS Engine

CNTLLEV=
only the value MEM is accepted

COMPRESS=
no user-supplied values are accepted

CAUTION
Compression and encryption are mutually exclusive in the SPD Engine. If
you are copying a default Base SAS engine data set to an SPD Engine data set and
the data set is compressed and encrypted, the compression is dropped. You cannot
create an SPD Engine data set with both encryption and compression.

DLDMGACTION=
does not support DLDMGACTION=NOINDEX, but does support ABORT, FAIL,
PROMPT, and REPAIR.

ENCRYPT=
encrypts data files

CAUTION
Compression and encryption are mutually exclusive in SPD Engine.

SAS Data Set Options Not Supported by
the SPD Engine

n BUFNO=

n BUFSIZE=

n ENCODING=

n EXTENDOBSCOUNTER=

n FIRSTOBS=

n GENMAX=

n GENNUM=

60 Chapter 4 / SPD Engine Data Set Options

n IDXNAME=

n OUTREP=

n POINTOBS=

n REUSE=

n TOBSNO=

Dictionary

ALIGN= Data Set Option
specifies variable alignment.

Valid in: DATA step and PROC step

Default: YES

Restriction: Use only with SPD Server

Engine: SPD Engine only

Syntax
ALIGN=YES | NO

Required Arguments
YES

enables variable alignment.

NO
disables variable alignment to allow the SPD Engine data set to be compatible
with the SPD Server.

Details

Variable Alignment
Base SAS imposes proper numeric data alignment on an observation on disk by the
careful arrangement of the variables within the observation. Like the default Base
SAS engine, the SPD Engine ensures that all of the numeric values are grouped
together at the beginning of the observation. It also ensures that the total

ALIGN= Data Set Option 61

observation length is an even multiple of 8-bytes by adding extra-padding bytes at
the end of the observation when necessary. The SAS memory system ensures that
all allocated memory starts on an 8-byte boundary and that all of the numeric values
are 8 bytes long. Grouping the numeric values together at the beginning of the
observation ensures that they will all be properly aligned and can be used directly
from the memory.

An observation in an SPD Engine data set is read from disk into memory. All of the
bytes are read at once, and their relative alignment is maintained in memory. For
maximum performance when accessing that observation data, all numeric data
values need to be properly aligned. Therefore, the need to move the values to a
new location is avoided. The normal behavior of the SPD engine is to ensure that all
of the numeric values in an observation are aligned on an 8-byte boundary when
written to disk. This allows the SPD engine to retrieve the observation data from disk
and store it in memory. The SPD Engine application uses the observation data
directly from that location without the need to move it.

Using the SPD Server
The SPD Server does not support the data alignment feature. Data sets created by
the SPD Engine that are used by the SPD Server must be created with data
alignment disabled. Using the ALIGN=NO option causes the data stored in the data
set to not be aligned. As a result, the data must be moved from its original memory
location that it was read into and into a different memory location that is aligned.

The purpose of the ALIGN=NO data set option is to specify that no data alignment is
done by the SPD Engine. This is not useful in most situations, but it is necessary
when using the SPD Server. The SPD Server does not support variable alignment
capability. In some situations, the SPD Server will refuse to operate on a data set
that has aligned variables.

CAUTION
Do not use the ALIGN=NO option unless the data set is destined for the SPD
Server. Unaligned variable data will cause a significant decrease in performance when
processed by Base SAS.

Examples

Example 1: Data Set with Variable Alignment
The first data set shows the default behavior—it has aligned variables. Note that the
observation length is not the sum of the variable lengths. The observation length
has been rounded up to be an even multiple of 8. Also, the variables have been
rearranged so that the numeric variables come first in the observation.

62 Chapter 4 / SPD Engine Data Set Options

Example Code 4.1 Data Set with Variable Alignment

data testdata.size;
 length text $10 width 8 chars 8;
 text='Zero'; width=1; chars=4; output;
 text='Ten'; width=2; chars=3; output;
 text='Twenty'; width=2; chars=6; output;
run;

NOTE: The data set TESTDATA.SIZE has 3 observations and 3 variables.

proc sql;
 select obslen
 from dictionary.tables
 where memname="SIZE";

 Observation
 Length

 32

 select varnum, name, npos, length
 from dictionary.columns
 where memname="SIZE"
 order by npos;

 Column
 Number Column Column
 in Table Column Name Position Length
 --
 2 width 0 8
 3 chars 8 8
 1 text 16 10

quit;

/* --- */

data testdata.size (align=no);
 length text $10 width 8 chars 8;
 text='Zero'; width=1; chars=4; output;
 text='Ten'; width=2; chars=3; output;
 text='Twenty'; width=2; chars=6; output;
run;

NOTE: The data set TESTDATA.SIZE has 3 observations and 3 variables.

Example 2: Data Set without Variable Alignment
The second data set is identical except that the variables are not aligned. Note that
the observation length is just the sum of the variable lengths. The observation
length is not rounded to an even multiple of 8-bytes. The variables appear in the
order in which they were encountered in the DATA step in the LENGTH statement.
The variables were not rearranged for alignment.

ALIGN= Data Set Option 63

Example Code 4.2 Data Set without Variable Alignment

data testdata.size (align=no);
 length text $10 width 8 chars 8;
 text='Zero'; width=1; chars=4; output;
 text='Ten'; width=2; chars=3; output;
 text='Twenty'; width=2; chars=6; output;
run;

NOTE: The data set TESTDATA.SIZE has 3 observations and 3 variables.

proc sql;
 select obslen
 from dictionary.tables
 where memname="SIZE";

 Observation
 Length

 26

 select varnum, name, npos, length
 from dictionary.columns
 where memname="SIZE"
 order by npos;

 Column
 Number Column Column
 in Table Column Name Position Length
 --
 1 text 0 10
 2 width 10 8
 3 chars 18 8
quit;

NOTE: The data set TESTDATA.SIZE has 3 observations and 3 variables.

ASYNCINDEX= Data Set Option
Specifies to create indexes in parallel when creating multiple indexes on an SPD Engine data set.

Valid in: DATASETS procedure or with the INDEX data set option

Default: NO

Engine: SPD Engine only

Syntax
ASYNCINDEX=YES | NO

64 Chapter 4 / SPD Engine Data Set Options

Required Arguments
YES

creates the indexes in parallel (asynchronously).

NO
creates one index at a time (synchronously).

Details
The SPD Engine can create multiple indexes with a single scan of a data set. The
SPD Engine spawns a single thread for each index created, and then processes the
threads simultaneously. Although creating indexes in parallel is much faster than
scanning the data set for each index, the default for this option is NO because
parallel index creation requires extra utility space to store the sorting files and
requires additional memory. If index creation fails due to insufficient resources, you
can do one or both of the following:

n Increase the size of the utility file space using the SPDEUTILLOC= system
option.

n Set the SAS system option to MEMSIZE=01 and increase the utility space that is
used for index sorting using the SPDEINDEXSORTSIZE= system option.

Example: Creating Indexes in Groups
The DATASETS procedure has the flexibility to use batched parallel index creation
using multiple MODIFY groups. Instead of creating all of the indexes at once, which
would require a significant amount of space, you can create the indexes in groups
as shown in the following example. Indexes PatientNo and PatientClass are created
together as are the indexes LastName and FirstName. The other indexes are
created serially.

proc datasets lib=main;
 modify patients(asyncindex=yes);
 index create PatientNo PatientClass;
 run;
 modify patients(asyncindex=yes);
 index create LastName FirstName;
 run;
 modify patients(asyncindex=no);
 index create FullName=(LastName FirstName)
 ClassSex=(PatientClass PatientSex);
 run;
quit;

1. For z/OS, increase the REGION size.

ASYNCINDEX= Data Set Option 65

BYNOEQUALS= Data Set Option
Specifies whether the output order of data set observations that have identical values for the BY variable is
guaranteed to be in the data set order.

Valid in: DATA step and PROC step

Used by: BYSORT=YES data set option

Default: NO

Engine: SPD Engine only

Syntax
BYNOEQUALS=YES | NO

Required Arguments
YES

does not guarantee that the output order of data set observations that have
identical values for the BY variable is in data set order.

NO
guarantees that the output order of data set observations that have identical
values for the BY variable is in data set order.

Details
When a group of observations that have identical values for the BY statement is
output, the order of the observations in the output is the same as the data set order.
This happens because the default is BYNOEQUALS=NO. By specifying YES, the
processing time is decreased, but the observations are not guaranteed to be output
in the data set order.

The data set or LIBNAME option BYSORT= must be YES (the default) because the
BYNOEQUALS= option has no effect when BYSORT=NO.

The following table shows when the SPD Engine preserves physical order in the
output:

Table 4.1 SPD Engine Preserves Physical Order

Condition: Data Set Order Preserved?

If BY is present YES (BYNOEQUALS=NO and
BYSORT=YES by default)

66 Chapter 4 / SPD Engine Data Set Options

Condition: Data Set Order Preserved?

If BY is present and BYNOEQUALS=YES NO

If BY is present and BYSORT=NO YES (because no automatic sort occurs)

If neither BY nor WHERE is present YES

If WHERE is present NO

Examples

Example 1: BYNOEQUALS=YES
In the following example, the observations that have identical BY values on the key
variable are output in unpredictable order because BYNOEQUALS=YES:

title 'With BYNOEQUALS=YES';
proc print data=labs.performance(bynoequals=yes) noobs;
 by score;
run;

The output is shown:

BYNOEQUALS= Data Set Option 67

Output 4.1 BYNOEQUALS=YES

Example 2: BYNOEQUALS=NO
The following example shows the output with BYNOEQUALS=NO:

title 'With BYNOEQUALS=NO;
proc print data=labs.performance(bynoequals=no) noobs;
 by score;
run;

The output is shown:

68 Chapter 4 / SPD Engine Data Set Options

Output 4.2 BYNOEQUALS=NO

BYSORT= Data Set Option
Specifies the SPD Engine to perform an automatic sort when it encounters a BY statement.

Valid in: DATA step and PROC step

BYSORT= Data Set Option 69

Default: YES

Interaction: “BYNOEQUALS= Data Set Option” on page 66

Engine: SPD Engine only

Syntax
BYSORT=YES | NO

Required Arguments
YES

specifies to automatically sort the data based on the BY variables when a BY
statement is encountered instead of sorting the data ahead of time.

NO
specifies not to sort the data based on the BY variables. Specifying NO means
that the data must already be sorted before the BY statement.

Note: Indexes are not used when BYSORT=NO is set.

Details
DATA or PROC step processing using the default Base SAS engine requires that if
there is no index or if the observations are not in order, the data set must be sorted
before a BY statement is issued. In contrast, by default, the SPD Engine sorts the
data returned to the application if the observations are not in order. Unlike PROC
SORT, which creates a new sorted data set, the SPD Engine's automatic sort does
not change the permanent data set and does not create a new data set. However,
utility file space is used. For more information, see “SPDEUTILLOC System Option”
on page 119.

The default is BYSORT=YES. A BYSORT=YES argument enables the automatic
sort, which generates the output for the observations in BY group order. If the data
set option BYNOEQUALS=YES, then the observations within a group might be
written in a different order from the order in the data set. Set BYNOEQUALS=NO to
retain data set order.

The BYSORT=NO argument instructs the engine to do nothing to sort the data. The
BYSORT=NO argument means that the data must already be sorted before the BY
statement. Sorting can be from a previous PROC SORT or from the data set having
been created in BY variable order. An error occurs if the data set is not sorted.

When BYSORT=NO, grouped data is delivered to the application in data set order.
Indexes are not used to retrieve the observations in BY variable order. The data set
option BYNOEQUALS= has no effect when BYSORT=NO.

If you specify the BYSORT= option in the LIBNAME statement, it can be overridden
by specifying BYSORT= in the PROC or DATA steps. Set BYSORT=YES in the
DATA or PROC step, for input opens, to override BYSORT=NO in the LIBNAME
statement.

70 Chapter 4 / SPD Engine Data Set Options

When you use the BYSORT=YES and the IDXWHERE= data set options, the
following messages are written to the SAS log if you set the MSGLEVEL=I SAS
system option:

n If IDXWHERE=YES and there is an index on the BY variable, the index is used
to order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for table tablename.

n If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY
variable, SPD Engine performs an automatic sort to order the rows of the table.
The following message is written to the SAS log:

Note: BY ordering was produced by performing an automatic sort on
 table tablename.

Comparisons
The BYSORT= data set option overrides the BYSORT= LIBNAME statement option.

Examples

Example 1: Group Formatting with BYSORT=YES
by Default
libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;
proc print data=growth.teens; by sex;
run;

Even though the data was not sorted using PROC SORT, no error occurred
because BYSORT=YES is the default.

The output is shown:

BYSORT= Data Set Option 71

Output 4.3 Group Formatting with BYSORT=YES by Default

Example 2: BYSORT=NO
With BYSORT=NO in the PROC PRINT statement, SAS returns an error whenever
automatic sorting is suppressed (BYSORT=NO). The data must be sorted on the BY
variable before the BY statement (for example, by using PROC SORT).

libname growth spde 'SAS-library';
proc print data=growth.teens (bysort=no);
by sex;
run;
ERROR: Data set GROWTH.TEENS is not sorted in ascending sequence.
 The current BY-group has Sex = M and the next BY-group has Sex = F.
NOTE: The SAS System stopped processing this step because of errors.

COMPRESS= Data Set Option
Specifies to compress SPD Engine data sets on disk as they are being created.

Valid in: DATA step and PROC step

Restriction: Cannot be used with ENCRYPT=YES or ENCRYPT=AES

Interactions: “IOBLOCKSIZE= Data Set Option” on page 88
“PADCOMPRESS= Data Set Option” on page 93

72 Chapter 4 / SPD Engine Data Set Options

Engine: SPD Engine only

Syntax
COMPRESS=NO | CHAR | BINARY

Required Arguments
NO

performs no data set compression.

CHAR
specifies that data in an SPD Engine data set be compressed in blocks by using
RLE (run-length encoding). RLE compresses data by reducing repeated runs of
the same character (including a blank space) to two-byte or three-byte
representations.

Alias YES

BINARY
specifies that data in an SPD Engine data set be compressed in blocks by using
RDC (Ross Data Compression). RDC combines RLE and sliding window
compression to compress the file by representing repeated byte patterns more
efficiently.

Note: This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (character and numeric variables).

Details

When you specify COMPRESS=YES | BINARY | CHAR, the SPD Engine
compresses, by blocks, the data component file as it is created. To specify the size
of the compressed blocks, use the “IOBLOCKSIZE= Data Set Option” on page 88
when you create the data set. To add padding to the newly compressed blocks,
specify “PADCOMPRESS= Data Set Option” on page 93 when creating or
updating the data set. For more information, see “Updates to a Compressed SPD
Engine Data Set” on page 22.

If you are migrating a default Base SAS engine data set that is both compressed
and encrypted, the encryption is retained, but the compression is dropped.

The CONTENTS procedure identifies the compress setting. If the data set is
compressed, PROC CONTENTS prints information about the compression. The
following example explains the Compressed Info fields in the CONTENTS
procedure output:

In general, COMPRESS=CHAR provides good compression when single bytes
repeat; COMPRESS=BINARY provides good compression when strings of bytes
repeat. At the same time, it is more costly to look for strings of bytes that repeat,
than to look for single bytes that repeat. For examples, see “Example 1:

COMPRESS= Data Set Option 73

COMPRESS=CHAR” on page 75 and “Example 2: COMPRESS=BINARY” on
page 75.

Output 4.4 PROC CONTENTS Compressed Section

Number of compressed blocks
number of compressed blocks that are required to store data.

Raw data blocksize
compressed block size in bytes calculated from the size specified in the
IOBLOCKSIZE= data set option. It is the largest multiple of the observation
length that fits in the block size.

Number of blocks with overflow
number of compressed blocks that needed more space. When data is updated
and the compressed new block is larger than the compressed old block, an
overflow block fragment is created.

Max overflow chain length
largest number of overflows for a single block. For example, the maximum
overflow chain length would be 2 if a compressed block was updated and
became larger, and then updated again to a larger size.

Block number for max chain
number of the block containing the largest number of overflow blocks.

Min overflow area
minimum amount of disk space that an overflow requires.

Max overflow area
maximum amount of disk space that an overflow requires.

Accessing compressed files usually requires more processing time. The files have
to be decompressed before reading them and, if updating, they have to be
compressed again when written to disk.

Comparisons
The COMPRESS= data set option overrides the COMPRESS= LIBNAME statement
option and the COMPRESS= system option.

74 Chapter 4 / SPD Engine Data Set Options

If the COMPRESS= data set option or LIBNAME statement option is not set, then
the value of the COMPRESS= system option is used. The COMPRESS= system
option default value is NO.

Examples

Example 1: COMPRESS=CHAR

data mylib.CharRepeats(compress=char);
 length ca $ 200;
 do i=1 to 100000;
 ca='aaaaaaaaaaaaaaaaaaaaaa';
 cb='bbbbbbbbbbbbbbbbbbbbbb';
 cc='cccccccccccccccccccccc';
 output;
 end;
run;

The following message is written to the SAS log:

NOTE: Compressing data set MYLIB.CHARREPEATS decreased size by 88.55 percent.
 Compressed is 45 pages; un-compressed would require 393 pages.

Example 2: COMPRESS=BINARY
data mylib.StringRepeats(compress=binary);
 length cabcd $ 200;
 do i=1 to 1000000;
 cabcd='abcdabcdabcdabcdabcdabcdabcdabcd';
 cefgh='efghefghefghefghefghefghefghefgh';
 cijkl='ijklijklijklijklijklijklijklijkl';
 output;
 end;
run;

The following message is written to the SAS log:

NOTE: Compressing data set MYLIB.STRINGREPEATS decreased size by 70.27 percent.
 Compressed is 1239 pages; un-compressed would require 4167 pages.

ENCRYPT= Data Set Option
Specifies whether to encrypt an output SPD Engine data set.

Valid in: DATA step and PROC step

Default: NO

ENCRYPT= Data Set Option 75

Restrictions: Use only with output data sets
ENCRYPT=YES or ENCRYPT=AES cannot be used with COMPRESS=

Syntax
ENCRYPT= AES | NO | YES

Syntax Description
AES

encrypts the data set using the AES (Advanced Encryption Standard) algorithm.
AES provides stronger encryption using SAS/SECURE software, which is
included with Base SAS software. You must use the ENCRYPTKEY= data set
option when using ENCRYPT=AES. For more information, see “ENCRYPTKEY=
Data Set Option” on page 78.

CAUTION Record all ENCRYPTKEY= key values if you specify
ENCRYPT=AES. If you forget the ENCRYPTKEY= key value, you lose
your data. SAS cannot assist you in recovering the ENCRYPTKEY= key
value. The following note is written to the log:

Note: If you lose or forget the ENCRYPTKEY=
key value, there will be no way to open the file or
recover the data.

NO
does not encrypt the data set.

YES
encrypts the data set using the SAS Proprietary algorithm. This encryption
method uses passwords that are stored in the data set. At a minimum, you must
specify the READ= or the PW= data set option at the same time that you specify
ENCRYPT=YES. Because the encryption method uses passwords, you cannot
change any password on an encrypted data set without re-creating the data set.

CAUTION Record all passwords if you specify ENCRYPT=YES. If you forget
a password, you cannot reset it without assistance from SAS. The process is
time-consuming and resource-intensive.

Details
Encryption and compression are mutually exclusive in SPD Engine.

You cannot create an SPD Engine data set with both encryption and compression. If
you use ENCRYPT=YES or ENCRYPT=AES and the COMPRESS= data set or
LIBNAME option, the following error is generated:

ERROR: The data set was not created because compression and
 encryption cannot both be specified.

You cannot copy a Base SAS data set that is both compressed and encrypted to an
SPD Engine library.

76 Chapter 4 / SPD Engine Data Set Options

When using ENCRYPT=YES, the following rules apply:

n To copy an encrypted data set, the output engine must support encryption.
Otherwise, the data set is not copied.

n If the data set is encrypted, all associated index files and metadata files are also
encrypted.

n Encryption requires approximately the same amount of CPU resources as
compression.

n You cannot use PROC CPORT on SAS Proprietary-encrypted data sets.

When using ENCRYPT=AES, the following rules apply:

n You must use the ENCRYPTKEY= data set option when creating a data set with
AES encryption.

n To copy an AES-encrypted data set, the output engine must support AES
encryption. Otherwise, the data set is not copied.

n If the data set is AES-encrypted, all associated index files are also AES-
encrypted.

n Releases before SAS 9.4 cannot use an AES-encrypted data set.

n You use SAS/SECURE software, which is included with Base SAS software, to
use AES encryption.

You cannot change the ENCRYPTKEY= key value on an AES-encrypted data set
without re-creating the data set.

The SPD Engine does not support ENCRYPT=AES2. If a default Base SAS data set
with AES2 encryption is copied to create a new SPD Engine data set, the encryption
converts to AES. A warning is written to the log.

Examples

Example 1: Using ENCRYPT=YES Option
The following example uses the SAS Proprietary algorithm:

libname depta spde 'SAS-library';
data salary(encrypt=yes read=green);
 input name $ yrsal bonuspct;
datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

To use this data set, specify the Read password:

proc contents data=salary(read=green);
run;

ENCRYPT= Data Set Option 77

Example 2: Using ENCRYPT=AES Option
The following example uses the AES algorithm:

data salary(encrypt=aes encryptkey=green);
 input name $ yrsal bonuspct;
 datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1

To use this data set, specify the ENCRYPTKEY= key value:

proc contents data=salary(encryptkey=green);
run;

Example 3: Copying AES-Encrypted Data Sets
Here are two examples of using ENCRYPTKEY= data set options and the COPY
procedure:

PROC COPY IN=inlib OUT=outlib ENCRYPTKEY=secret;
 SELECT abc (ENCRYPTKEY=secreta) DEF(ENCRYPTKEY=secretb)…

PROC COPY IN=inlib OUT=outlib;
 SELECT abc (ENCRYPTKEY=secreta) DEF(ENCRYPTKEY=secretb)…

ENCRYPTKEY= Data Set Option
Specifies a key value for AES encryption.

Valid in: DATA step and PROC step

Range: 1 to 64 bytes

Restrictions: Use with SAS 9.4 or later only
Use only with AES-encrypted data sets

Requirement: The key-value is case sensitive, and it must be enclosed in single or double quotation
marks.

Syntax
ENCRYPTKEY="key-value"

78 Chapter 4 / SPD Engine Data Set Options

Syntax Description
key-value

assigns an encrypt key value. You must use the ENCRYPTKEY= data set option
with ENCRYPT=AES. The key value can be up to 64-bytes long. The key-value
is case sensitive, and it must be enclosed in single or double quotation marks.

Single quotation marks support a key value that is:

n alphanumeric, special, and DBCS characters

n up to 64 bytes

n uppercase and lowercase letters

n case sensitive

encryptkey='key-value'
encryptkey='1234*#mykey'

Double quotation marks support a key value that is:

n alphanumeric, special, and DBCS characters

n up to 64 bytes

n uppercase and lowercase letters

n case sensitive

n a macro variable

encryptkey="key-value"
encryptkey="1234*#mykey"

When the ENCRYPTKEY= key value uses DBCS characters, the 64-byte limit
applies to the character string after it has been transcoded to UTF-8 encoding.
You can use the following DATA step to calculate the length in bytes of a key
value in DBCS:

data _null_;
 mykey=length(unicodec('key-value','UTF8'));
 put 'key length=' mykey;
run;

Note You cannot change the ENCRYPTKEY= key value on an AES-encrypted
data set without re-creating the data set.

Details
CAUTION
You must remember the ENCRYPTKEY= key value. If you forget the
ENCRYPTKEY= key value, you lose your data. SAS cannot assist you in recovering the
ENCRYPTKEY= key value.

You must use the ENCRYPTKEY= data set option when creating or accessing an
SPD Engine data set with AES encryption.

ENCRYPTKEY= Data Set Option 79

The ENCRYPTKEY= data set option does not protect the data set from deletion or
replacement. Encrypted data sets can be deleted using any of the following
scenarios without having to specify a key value:

n the KILL option in PROC DATASETS

n the DROP statement in PROC SQL

n the DELETE procedure

The ENCRYPTKEY= data set option prevents access only to the contents of the
data set. To protect the data set from deletion or replacement, the data set must
also contain an ALTER= password.

You must specify the ENCRYPTKEY= option when you copy AES-encrypted data
sets. The key value follows the data set name in the SELECT statement. The
following example uses the SELECT statement:

proc copy in=OldLib out=NewLib;
 select salary(encryptkey="key-value");
run;

When working with data sets protected by the ENCRYPTKEY= key value in the
DATASETS procedure, you can specify the key value in the AGE, APPEND,
CONTENTS, and MODIFY statements. The ENCRYPTKEY= data set option can be
specified either in parentheses after the name of the SAS data set or after a forward
slash.

It is possible to use a macro variable as the ENCRYPTKEY= key value. To use a
macro variable, you must use double quotation marks. The following code defines a
macro variable:

%let secret=MyValue;

The following code uses the macro variable as the ENCRYPTKEY= key value:

data my.dsname(encrypt=aes encryptkey="&secret");

When you specify a macro variable as the ENCRYPTKEY= key value, you must
enclose the macro variable in double quotation marks. If you do not use the double
quotation marks, unpredictable results can occur.

Example: Using ENCRYPTKEY= Data Set
Option
This example uses the ENCRYPT=AES option:

data spdelib.salary(encrypt=aes encryptkey="green");
 input name $ yrsal bonuspct;
 datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1

To use this data set, specify the ENCRYPTKEY= key value:

proc contents data=spdelib.salary(encryptkey="green");

80 Chapter 4 / SPD Engine Data Set Options

run;

ENDOBS= Data Set Option
Specifies the end observation number in a user-defined range of observations to be processed.

Valid in: DATA step and PROC step

Default: The last observation in the data set

Restrictions: Use ENDOBS= with input data sets only
Cannot be used with the OBS= system or data set option or the FIRSTOBS= system
and data set option

Interactions: “ENDOBS= LIBNAME Statement Option” on page 40
“STARTOBS= LIBNAME Statement Option” on page 52
“STARTOBS= Data Set Option” on page 96

Engine: SPD Engine only

Syntax
ENDOBS=n

Required Argument
n

is the number of the end observation.

Details

Specifying a Range of Observations
By default, the SPD Engine processes all of the observations in the entire data set
unless you specify a range of observations with the STARTOBS= or ENDOBS=
options. If the STARTOBS= option is used without the ENDOBS= option, the implied
value of ENDOBS= is the end of the data set. When both options are used together,
the value of ENDOBS= must be greater than the value of STARTOBS=.

The ENDOBS= data set option in the SPD Engine works the same way as the
OBS= data set option in the default Base SAS engine. The only difference is when
ENDOBS= is specified in a WHERE expression.

Using ENDOBS= with a WHERE Expression

ENDOBS= Data Set Option 81

When ENDOBS= is used in a WHERE expression, the ENDOBS= value represents
the last observation to process, rather than the number of observations to return.
The following examples show the difference.

Note: The OBS= system option and the OBS= data set option cannot be used with
STARTOBS= or ENDOBS= data set or LIBNAME options.

Comparisons
The ENDOBS= data set option overrides the ENDOBS= LIBNAME statement
option.

Examples

Example 1: Using the ENDOBS= Data Set Option
A data set is created and processed by the SPD Engine with ENDOBS=5 option
specified. The WHERE expression is applied to the data set ending with observation
number 5. The PRINT procedure prints four observations, which are the
observations qualified by the WHERE expression.

libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
 list;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.0
Alice F 14 65.1 91.0
William M 15 66.5 112.0
;
proc print data=growth.teens (endobs=5);
 where age >13;
 title 'WHERE age > 13 using SPD Engine';
run;

82 Chapter 4 / SPD Engine Data Set Options

Output 4.5 ENDOBS=

Example 2: OBS= with SPD Engine
The same data set is processed with OBS=5 specified. PROC PRINT prints five
observations, which are all of the observations qualified by the WHERE expression,
ending with the fifth qualified observation.

libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
 list;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
;
proc print data=growth.teens (obs=5);
 where age >13;
 title 'WHERE age > 13 using V9';
run;

ENDOBS= Data Set Option 83

Output 4.6 OBS=

IDXBY= Data Set Option
Specifies whether to use an index when processing a BY statement in the SPD Engine.

Valid in: DATA step and PROC step

Default: YES

Engine: SPD Engine only

Syntax
IDXBY=YES | NO

Required Arguments
YES

uses an index when processing indexed variables in a BY statement.

Note: If the BY statement specifies more than one variable or the
DESCENDING option, then the index is not used, even if IDXBY=YES.

NO
does not use an index when processing indexed variables in a BY statement.

Note IDXBY=NO performs an automatic sort when processing a BY statement.

84 Chapter 4 / SPD Engine Data Set Options

Details
When you use the IDXBY= data set option, make sure that you use the
BYSORT=YES option and that the BY variable is indexed.

In some cases, you might get better performance from the SPD Engine if you
automatically sort the data. To use the automatic sort, BYSORT=YES must be set
and you should specify IDXBY=NO.

Set the SAS system option MSGLEVEL=I so that the BY processing information is
written to the SAS log. When you use the IDXBY= data set option and the
BYSORT=YES option, the following messages are written to the SAS log:

n If IDXBY=YES and there is an index on the BY variable, the index is used to
order the rows of the table. The following message is written to the SAS log:

 NOTE: BY ordering was produced by using an index for
 table tablename.

n If IDXBY=NO, the following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
 on table tablename.

Comparisons
The IDXBY= data set option overrides the IDXBY= LIBNAME statement option.

Examples

Example 1: Using the IDXBY=NO Data Set Option
options msglevel=i;
proc means data=permdata.customer(IDXBY=no);
 var sales;
 by state;
run;

The following message is written to the SAS log:

NOTE: BY ordering was produced by performing an automatic sort
 on table PERMDATA.customer.
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER.

Example 2: Using the IDXBY=YES Data Set Option
proc means data=permdata.customer(IDXBY=yes);
 var sales;
 by state;
run;

IDXBY= Data Set Option 85

The following message is written to the SAS log:

NOTE: BY ordering was produced by using an index for table
 PERMDATA.customer.
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER.

IDXWHERE= Data Set Option
Specifies whether to use an index when processing a WHERE expression in the SPD Engine.

Valid in: DATA step and PROC step

Default: YES

Restriction: WHERENOINDEX= option cannot be used with IDXWHERE=NO option

Engine: SPD Engine only

Syntax
IDXWHERE=YES | NO

Required Arguments
YES

uses an index when processing a WHERE expression.

NO
ignores an index when processing a WHERE expression.

Restriction You cannot use the IDXWHERE=NO option and the
WHERENOINDEX= option together.

Details
IDXWHERE= is used with the SPD Engine's WHERE expression planning software
called WHINIT. WHINIT tests the performance of index use with WHERE processing
in various applications. Set the SAS system option MSGLEVEL=I so that the
WHERE processing information is output to the SAS log.

When you use the IDXWHERE= data set option and the BYSORT=YES option, the
following messages are written to the SAS log:

n If IDXWHERE=YES and there is an index on the BY variable, the index is used
to order the rows of the table. The following message is written to the SAS log:

Note: BY ordering was produced by using an index for
table tablename.

86 Chapter 4 / SPD Engine Data Set Options

n If IDXWHERE=NO or IDXWHERE=YES and there is no index on the BY
variable, SPD Engine performs an automatic sort to order the rows of the table.
The following message is written to the SAS log:

Note: BY ordering was produced by performing an
automatic sort on table tablename.

The SPD Engine uses WHINIT, a rules-based WHERE expression planner, to select
the most appropriate evaluation strategy for a query. The SAS system option
MSGLEVEL=I surfaces WHINIT messages to the SAS log that can help you
determine whether one or more indexes are used in a query. For more details about
WHINIT, see “SPDEWHEVAL System Option” on page 120.

Note: Do not arbitrarily suppress index use when using WHERE and BY
statements together. You use a WHERE statement to filter the observations and a
BY statement to order the observations. The filtered observations qualified by the
WHERE statement are fed directly into a sort step as part of the parallel WHERE
expression evaluation. The final, ordered observation set is produced as the result.
Index use in WHERE processing greatly improves the filtering and feeding
performance into the sort step.

Examples

Example 1: Using WHINIT Log Output with
IDXWHERE=NO
This example shows that evaluation strategy 2 is used in the WHERE expression
because IDXWHERE=NO was specified.

Example Code 4.3 IDXWHERE=NO

34 options msglevel=i;
35 proc means data=permdata.customer(idxwhere=no);
36 var sales;
37 where state="CA";
38 run;
whinit: WHERE (sstate='CA')
whinit returns: ALL EVAL2
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER. WHERE state='CA';

Example 2: Using WHINIT Log Output with
IDXWHERE=YES
This example shows that evaluation strategy 1 was used because
IDXWHERE=YES was specified.

IDXWHERE= Data Set Option 87

Example Code 4.4 IDXWHERE=YES

39 proc means data=permdata.customer(idxwhere=yes);
40 var sales;
41 where state="CA";
42 run;
whinit: WHERE (sstate='CA')
 --
whinit: SBM-INDEX STATE uses 45% of segs (WITHIN maxsegratio 75%)
whinit returns: ALL EVAL1(w/SEGLIST)
NOTE: There were 2981 observations read from the data set
 PERMDATA.CUSTOMER. WHERE state='CA';

IOBLOCKSIZE= Data Set Option
Specifies the size in bytes of a block of observations to be used in an I/O operation.

Valid in: DATA step and PROC step

Default: 1,048,576 bytes (1 megabyte)

Range: The minimum block size is 32,768 bytes. The maximum block size is half the size of the
SPD Engine data partition file.

Restriction: When reading a data set, the block size can significantly affect performance. When
retrieving a large percentage of the data, a larger block size improves performance.
However, when retrieving a subset of the data such as with WHERE processing, a
smaller block size performs better.

Engine: SPD Engine only

Syntax
IOBLOCKSIZE=n

Required Argument
n

is the size in bytes of a block of observations.

Details
The I/O block size determines the amount of data that is physically transferred
together in an I/O operation. The SPD Engine uses blocks in memory to collect the
rows to be written to or read from a data component file. The IOBLOCKSIZE=
option specifies the size of the block, but the actual size is computed to
accommodate the largest number of rows that fit in the specified size of n bytes.
Therefore, the actual size is a multiple of the row length. If you set IOBLOCKSIZE=
too small to fit two rows, an error is written to the log and the data set is not created.

88 Chapter 4 / SPD Engine Data Set Options

In a very general sense, the larger the block size, the less I/O. The performance for
reading data depends on the I/O operation in the following ways:

n Large blocks are more efficient for sequential I/O. An example of sequential I/O
is a PRINT procedure that reads a full data set.

n Small blocks are more efficient for random I/O. An example of random I/O is a
BY clause with an index on a data set that is not already sorted on the BY
variable. Small blocks can also be more efficient for I/O that is not completely
sequential. An example is the SUMMARY procedure, which does not perform a
full sequential read.

If you are not certain whether a large or small block size is best, you are
encouraged to run performance tests.

If you process a data set in multiple ways, you can specify a different block size
based on the operation that you are performing. This feature is available for data
sets that are not compressed or encrypted. The details are as follows.

Compressed or encrypted data set
IOBLOCKSIZE= determines how many rows are compressed or encrypted
together, which determines the amount of data that is physically transferred for
both reading and writing. The block size is a permanent attribute of the data set.
To specify a different block size, you must copy the data set to a new data set,
and specify a new block size for the new data set. It is possible to specify a
different IOBLOCKSIZE= for the Read operation, but that block size affects only
the output operation (the results of processing that are returned to the user) and
does not affect the size of blocks that are read from disk. Therefore, specifying
the same block size for creation and reading usually provides the best
performance. When you first create a data set, follow the general guidelines for
the majority of its intended use (sequential or random I/O). For random I/O on a
compressed data set, use the minimum value during both data set creation and
reading.

Not compressed or encrypted
For a data set that is not compressed or encrypted, IOBLOCKSIZE= is not a
permanent attribute of the data set. For an uncompressed data set, the block
size determines the size of the blocks that are used to read the data from disk to
memory. The block size has no effect when writing data to disk. Therefore, you
can specify a different block size based on the Read operation that you perform.

For details about the interaction between IOBLOCKSIZE= and PADCOMPRESS=,
see “Updates to a Compressed SPD Engine Data Set” on page 22.

Comparisons
The IOBLOCKSIZE= data set option overrides the IOBLOCKSIZE= LIBNAME
statement option.

Example: Using IOBLOCKSIZE=
/*IOBLOCKSIZE set to 64K */
data sport.maillist(ioblocksize=65536);
/*IOBLOCKSIZE set to 32K */

IOBLOCKSIZE= Data Set Option 89

data sport.maillist(ioblocksize=32768 compress=yes);

LISTFILES= Data Set Option
Specifies whether the CONTENTS procedure lists the complete pathnames of all of the component files of
an SPD Engine data set.

Valid in: PROC CONTENTS only

Default: NO

Engine: SPD Engine only

Syntax
LISTFILES=YES | NO

Required Arguments
YES

lists the complete pathnames of all of the component files of an SPD Engine
data set.

NO
does not list the pathnames.

Details
The LISTFILES= data set option is used only with the SPD Engine. The
CONTENTS procedure is used to list the complete pathnames of all of the
component files of an SPD Engine data set.

Example: LISTFILES Option
proc contents data=company.depts (listfiles=yes);

The following CONTENTS procedure output shows the complete pathnames of all
of the component files:

90 Chapter 4 / SPD Engine Data Set Options

Output 4.7 CONTENTS Procedure—Output Section 1

LISTFILES= Data Set Option 91

Output 4.8 CONTENTS Procedure—Output Section 2

92 Chapter 4 / SPD Engine Data Set Options

Output 4.9 CONTENTS Procedure—Output Section 3

PADCOMPRESS= Data Set Option
Specifies the number of bytes to add to compressed blocks in a data set opened for OUTPUT or UPDATE.

Valid in: DATA step and PROC step

Default: 0

Interactions: “COMPRESS= Data Set Option” on page 72
“IOBLOCKSIZE= Data Set Option” on page 88

Engine: SPD Engine only

Syntax
PADCOMPRESS=n

PADCOMPRESS= Data Set Option 93

Required Argument
n

is the number of bytes to add.

Details
Compressed SPD Engine data sets occupy blocks of space on the disk. The size of
a block is derived from the IOBLOCKSIZE= data set option specified when the data
set is created. When the data set is updated, a new block fragment might need to be
created to hold the update. More updates might then create new fragments, which,
in turn, increases the number of I/O operations needed to read a data set.

By increasing the block padding in certain situations where many updates to the
data set are expected, fragmentation can be kept to a minimum. However, adding
padding can waste space if you do not update the data set.

You must weigh the cost of padding all compression blocks against the cost of
possible fragmentation of some compression blocks.

Specifying the PADCOMPRESS= data set option when you create or update a data
set adds space to all of the blocks as they are written back to the disk. The
PADCOMPRESS= setting is not retained in the data set's metadata.

PARTSIZE= Data Set Option
Specifies the maximum size (in megabytes, gigabytes, or terabytes) that the data component partitions can
be. The value is specified when an SPD Engine data set is created. This size is a fixed size. This
specification applies only to the data component files.

Valid in: DATA step and PROC step

Used by: MINPARTSIZE= system option

Default: 128 megabytes

Range: 16 megabytes to 8,796,093,022,207 megabytes. You can change the lower limit by
setting the MINPARTSIZE= system option.

Interactions: “DATAPATH= LIBNAME Statement Option” on page 39
“MINPARTSIZE System Option” on page 115
If you set MINPARTSIZE= larger than the PARTSIZE= default, then you must specify
PARTSIZE= equal to or larger than MINPARTSIZE=.

Engine: SPD Engine only

Syntax
PARTSIZE=n | nM | nG | nT

94 Chapter 4 / SPD Engine Data Set Options

Required Argument
n | nM | nG | nT

is the size of the partition in megabytes, gigabytes, or terabytes. If n is specified
without M, G, or T, the default is megabytes. For example, PARTSIZE=128 is the
same as PARTSIZE=128M. The maximum value is 8,796,093,022,207
megabytes.

Restriction This restriction applies only to 32-bit hosts with the following
operating systems: z/OS, Linux SLES 9 x86, and the Windows
family. In SAS 9.3, if you create a data set with a partition size
greater than or equal to 2 gigabytes, you cannot open the data set
with any version of SPD Engine prior to SAS 9.2. The following
error message is written to the SAS log: ERROR: Unable to open
data file because its data representation differs from
the SAS session data representation.

Details
Multiple partitions are necessary to read the data in parallel. The option PARTSIZE=
forces the software to partition SPD Engine data files at the specified size. The
actual size of the partition is computed to accommodate the maximum number of
observations that fit in the specified size of n megabytes, gigabytes, or terabytes. If
you have a table with an observation length greater than 65K, you might find that
the PARTSIZE= that you specify and the actual partition size do not match. To get
these numbers to match, specify a PARTSIZE= that is a multiple of 32 and the
observation length.

By splitting (partitioning) the data portion of an SPD Engine data set into fixed-sized
files, the software can introduce a high degree of scalability for some operations.
The SPD Engine can spawn threads in parallel (for example, up to one thread per
partition for WHERE evaluations). Separate data partitions also enable the SPD
Engine to process the data without the overhead of file access contention between
the threads. Because each partition is one file, the trade-off for a small partition size
is that an increased number of files (for example, UNIX i-nodes) are required to
store the observations.

Scalability limitations using PARTSIZE= depend on how you configure and spread
the file systems specified in the DATAPATH= option across striped volumes. (You
should spread each individual volume's striping configuration across multiple disk
controllers or SCSI channels in the disk storage array.) The goal for the
configuration, at the hardware level, is to maximize parallelism during data retrieval.
For information about disk striping, see “I/O Setup and Validation” under “SPD
Engine” in Scalability and Performance at http://support.sas.com/rnd/scalability.

The PARTSIZE= specification is limited by the SPD Engine system option
MINPARTSIZE=, which is usually maintained by the system administrator.
MINPARTSIZE= ensures that an inexperienced user does not arbitrarily create small
partitions, thereby generating a large number of data files.

The partition size determines a unit of work for many of the parallel operations that
require full data set scans. But, more partitions does not always mean faster
processing. The trade-offs involve balancing the increased number of physical files
(partitions) required to store the data set against the amount of work that can be
done in parallel by having more partitions. More partitions means more open files to

PARTSIZE= Data Set Option 95

http://support.sas.com/rnd/scalability

process the data set, but a smaller number of observations in each partition. A
general rule is to have 10 or fewer partitions per data path, and 3 to 4 partitions per
CPU. (Some operating systems have a limit on the number of open files that you
can use.)

To determine an adequate partition size for a new SPD Engine data set, you should
be aware of the following:

n the types of applications that run against the data

n how much data you have

n how many CPUs are available to the applications

n which disks are available for storing the partitions

n the relationships of these disks to the CPUs

For example, if each CPU controls only one disk, then an appropriate partition size
would be one in which each disk contains approximately the same amount of data. If
each CPU controls two disks, then an appropriate partition size would be one in
which the load is balanced. Each CPU does approximately the same amount of
work.

Note: The PARTSIZE= value for a data set cannot be changed after a data set is
created. To change PARTSIZE=, you must re-create the data set and specify a
different PARTSIZE= value in the LIBNAME statement or on the new (output) data
set.

Comparisons
The PARTSIZE= data set option overrides the PARTSIZE= LIBNAME statement
option.

Example: Using a DATA Step
You have 100 gigabytes of data and 8 disks, so you can store 12.5 gigabytes per
disk. Optimally, you want 3 to 4 partitions per disk. A partition size of 3.125
gigabytes is appropriate. So, you can specify PARTSIZE=3200M.

data salecent.sw (partsize=3200m);

Using the same amount of data, you anticipate the amount of data doubles within a
year. You can either specify the same PARTSIZE= and have about 7 partitions per
disk, or you can increase PARTSIZE= to 5000M and have 5 partitions per disk.

STARTOBS= Data Set Option
Specifies the starting observation number in a user-defined range of observations to be processed.

Valid in: DATA step and PROC step

96 Chapter 4 / SPD Engine Data Set Options

Default: The first observation in the data set

Restrictions: Use STARTOBS= with input data sets only
Cannot be used with the OBS= system or data set option or with the FIRSTOBS=
system and data set option

Interactions: “STARTOBS= LIBNAME Statement Option” on page 52
“ENDOBS= LIBNAME Statement Option” on page 40
“ENDOBS= Data Set Option” on page 81

Engine: SPD Engine only

Syntax
STARTOBS=n

Required Argument
n

is the number of the starting observation.

Details

Specifying a Range of Observations
By default, the SPD Engine processes all of the observations in the entire data set
unless you specify a range of observations with the STARTOBS= and ENDOBS=
options. If the ENDOBS= option is used without the STARTOBS= option, the implied
value of STARTOBS= is 1. When both options are used together, the value of
STARTOBS= must be less than the value of ENDOBS=.

The STARTOBS= data set option in the SPD Engine works the same way as the
FIRSTOBS= SAS data set option in the default Base SAS engine. The only
difference is when STARTOBS= is specified in a WHERE expression.

Note: The FIRSTOBS= SAS data set option is not supported by the SPD Engine.
The OBS= system option and the OBS= data set option cannot be used with the
STARTOBS= or ENDOBS= data set or LIBNAME options.

Using STARTOBS= with a WHERE Expression
When STARTOBS= is used in a WHERE expression, the STARTOBS= value
represents the first observation on which to apply the WHERE expression. Compare
this value to the default Base SAS engine data set option FIRSTOBS=, which
specifies the starting observation number within the subset of data qualified by the
WHERE expression.

STARTOBS= Data Set Option 97

Comparisons
The STARTOBS= data set option overrides the STARTOBS= LIBNAME statement
option.

Examples

Example 1: STARTOBS= with SPD Engine
A data set is created and processed by the SPD Engine with STARTOBS=5
specified. The WHERE expression is applied to the data set, beginning with
observation number 5. The PRINT procedure prints six observations, which are the
observations qualified by the WHERE expression.

libname growth spde 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
 list;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
Mike M 16 67.0 105.1
;
proc print data=growth.teens (startobs=5);
 where age >13;
 title 'WHERE age>13 using SPD Engine';
run;

98 Chapter 4 / SPD Engine Data Set Options

Output 4.10 STARTOBS=

Example 2: FIRSTOBS= with the Default Base SAS
Engine
The same data set is processed by the default Base SAS engine with FIRSTOBS=5
option specified. PROC PRINT prints five observations, which are all of the
observations qualified by the WHERE expression, starting with the fifth qualified
observation. FIRSTOBS= option is not supported in the SPD Engine.

libname growth v9 'SAS-library';
data growth.teens;
 input Name $ Sex $ Age Height Weight;
 list;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
Mike M 16 67.0 105.1
;
proc print data=growth.teens (firstobs=5);
 where age >13;
 title 'WHERE age>13 using the V9 Engine';
run;

STARTOBS= Data Set Option 99

Output 4.11 Five Observations Printed

SYNCADD= Data Set Option
Specifies to process one observation at a time or multiple observations at a time when adding
observations.

Valid in: PROC SQL

Default: NO

Interaction: UNIQUESAVE=

Engine: SPD Engine only

Syntax
SYNCADD=YES | NO

Required Arguments
YES

processes a single observation at a time (synchronously).

NO
processes multiple observations at a time (asynchronously).

Details
With SYNCADD=YES, observations are processed one at a time. With PROC SQL,
if you are inserting observations into a data set with a unique index, and the SPD
Engine encounters an observation with a nonunique value, the following occurs:

n the Insert operation stops

100 Chapter 4 / SPD Engine Data Set Options

n all transactions just added are backed out

n the original data set on disk is unchanged

Adding observations with SYNCADD=NO is obviously much faster. However, when
inserting a few observations into a data set with a unique index using PROC SQL,
the SPD Engine can back out all the observations if one duplicate value is found.
Specifically, the following occurs:

n the SPD Engine rejects the observation

n the SPD Engine continues processing

n a status code is issued only at the end of the Insert operation

To save the rejected observations in a separate data set, set the UNIQUESAVE=
data set option to YES.

Example: Inserting Observations with
Duplicate Values into a Data Set with a
Unique Index
In the following example, two identical data sets, WITH_NO and WITH_YES, are
created. Both have a unique index.

PROC SQL is used to insert three new observations, one of which has duplicate
values. The SYNCADD=YES option is used. PROC SQL stops when the duplicate
values are encountered and restores the data set.

PROC SQL is used again to insert these three new observations (as before). In this
case, the SYNCADD=NO option is used. The observation with duplicate values is
rejected. The SAS log is shown:

SYNCADD= Data Set Option 101

Example Code 4.5 Inserting Observations

1 libname addlib spde 'c:\temp';
NOTE: Libref ADDLIB was successfully assigned as follows:
 Engine: SPDE
 Physical Name: c:\temp\
2
3 data addlib.with_no(index=(x /unique))
4 addlib.with_yes(index=(x /unique)) ;
5 input z $ 1-20 x y;
6 list;
7 datalines;

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----
+----8----+
8 one 1 10
9 two 2 20
10 three 3 30
11 four 4 40
12 five 5 50
NOTE: The data set ADDLIB.WITH_NO has 5 observations and 3 variables.
NOTE: The data set ADDLIB.WITH_YES has 5 observations and 3 variables.

13 run;
14
15 proc sql;
16 insert into addlib.with_yes(syncadd=yes)
17 values('six_yes', 6, 60)
18 values('seven_yes', 2, 70)
19 values('eight_yes', 8, 80)
20 ;
ERROR: Duplicate values not allowed on index x for file WITH_YES.
NOTE: This insert failed while attempting to add data from VALUES clause 2 to the
data set.
NOTE: Deleting the successful inserts before error noted above to restore table to a
consistent
 state.
21 quit;
NOTE: The SAS System stopped processing this step because of errors.
22

23 proc sql;
24 insert into addlib.with_no(syncadd=no)
25 values('six_no', 6, 60)
26 values('seven_no', 2, 70)
27 values('eight_no', 8, 80)
28 ;
NOTE: 3 rows were inserted into ADDLIB.WITH_NO.

WARNING: Duplicate values not allowed on index x for file WITH_NO, 1 observations
rejected.
29 quit;

30
31 proc compare data=addlib.with_no compare=addlib.with_yes;
32 run;

NOTE: There were 7 observations read from the data set ADDLIB.WITH_NO.
NOTE: There were 5 observations read from the data set ADDLIB.WITH_YES.

102 Chapter 4 / SPD Engine Data Set Options

THREADNUM= Data Set Option
Specifies the maximum number of I/O threads the SPD Engine can spawn for processing an SPD Engine
data set.

Valid in: DATA step and PROC step

Default: The value of the SPDEMAXTHREADS= system option, if set; otherwise, the default is
two times the number of CPUs on your computer

Interaction: “SPDEMAXTHREADS System Option” on page 117

Engine: SPD Engine only

Syntax
THREADNUM=n

Required Argument
n

specifies the number of threads.

Details
THREADNUM= enables you to specify the maximum number of I/O threads that the
SPD Engine spawns for processing an SPD Engine data set. The THREADNUM=
value applies to any of the following SPD Engine I/O processing:

n WHERE expression processing

n parallel index creation

Adjusting THREADNUM= enables the system administrator to adjust the level of
CPU resources the SPD Engine can use for any process. For example, setting
THREADNUM=4 limits the process to, at most, four CPUs, thereby enabling greater
throughput for other users or applications.

When THREADNUM= is greater than 1, parallel processing is likely to occur.
Therefore, physical order might not be retained in the output.

You can also use this option to explore scalability for WHERE expression
evaluations.

The SPDEMAXTHREADS= system option imposes an upper limit on the
consumption of system resources and constrains the THREADNUM= value.

Note: The SAS system option NOTHREADS does not affect the SPD Engine.

THREADNUM= Data Set Option 103

Note: Setting THREADNUM=1 means that no parallel processing occurs, which is
behavior consistent with the default Base SAS engine.

Example: Using %MACRO
The SPD Engine system option SPDEMAXTHREADS= is set to 128 for the session.
A SAS macro shows the effects of parallelism in the following example:

%macro dotest(maxthr);
%do nthr=1 %to &maxthr;
data _null_;
set mylib.precs(threadnum= &nthr);
 where occup= '022'
 and state in('37','03','06','36');
run;
%mend dotest;

UNIQUESAVE= Data Set Option
Specifies to save observations with nonunique key values (the rejected observations) to a separate data
set when adding observations to data sets with unique indexes.

Valid in: PROC APPEND and PROC SQL

Used by: SPDSUSDS automatic macro variable

Default: NO

Interaction: “SYNCADD= Data Set Option” on page 100

Engine: SPD Engine only

Syntax
UNIQUESAVE=YES | NO

Required Arguments
YES

if SYNCADD=NO, writes rejected observations to a separate, system-created
data set, which can be accessed by a reference to the macro variable
SPDSUSDS.

NO
does not write rejected observations to a separate data set.

104 Chapter 4 / SPD Engine Data Set Options

Details
Use UNIQUESAVE=YES when you are adding observations to a data set with
unique indexes and the data set option SYNCADD=NO is set.

SYNCADD=NO specifies that an Insert operation should process observations in
blocks (pipelining), instead of one at a time. Duplicate index values are detected
only after all the observations are applied to a data set. With UNIQUESAVE=YES,
the rejected observations are saved to a separate data set whose name is stored in
the SPD Engine macro variable SPDSUSDS. You can specify the macro variable in
place of the data set name to identify the rejected observations.

Note: When SYNCADD=YES, the UNIQUESAVE= option is ignored. For more
information see the SYNCADD= data set option.

Example: Using the UNIQUESAVE=
Option with the APPEND Procedure
In the following example, a data set with two unique indexes is created and another
data set with duplicate values is then appended to the first one. Because the
UNIQUESAVE=YES option is specified, a data set containing the rejected
observations is created. That data set includes a variable identifying the variable
that had the duplicate value. The SAS log is shown.

UNIQUESAVE= Data Set Option 105

Example Code 4.6 UNIQUESAVE= Option

1 libname employee spde 'c:\temp';
NOTE: Libref EMPLOYEE was successfully assigned as follows:
 Engine: SPDE
 Physical Name: c:\temp\
2
3 data employee.emp1 (index=(phone/unique room/unique));
4 input name $ phone room;
5 list;
6 datalines;

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----
+----8----+
7 Jill 4344 456
8 Jack 5589 789
9 Jim 8888 345
10 Sam 3334 657
NOTE: The data set EMPLOYEE.EMP1 has 4 observations and 3 variables.

11 run;
12
13 data employee.emp2;
14 input name $ phone room;
15 list;
16 datalines;

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----
+----8----+
17 Jack 8443 679
18 Ann 3334 987
19 Sam 8756 346
20 Susan 5321 456
NOTE: The data set EMPLOYEE.EMP2 has 4 observations and 3 variables.

21 run;
22
23 proc append base=employee.emp1(syncadd=no uniquesave=yes)
NOTE: Writing HTML Body file: sashtml.htm
24 data=employee.emp2;
25 run;

NOTE: Appending EMPLOYEE.EMP2 to EMPLOYEE.EMP1.
NOTE: There were 4 observations read from the data set EMPLOYEE.EMP2.
NOTE: 2 observations added.
NOTE: The data set EMPLOYEE.EMP1 has 6 observations and 3 variables.
WARNING: Duplicate values not allowed on index phone for file EMP1, 1 observations
rejected.
WARNING: Duplicate values not allowed on index room for file EMP1, 1 observations
rejected.
NOTE: Duplicate records have been stored in file
EMPLOYEE._SPDEDUP048604700067A9F340C7E3E6.

26
27 proc print data=employee.emp1;
28 title 'Listing of Final Data Set';
29 run;

NOTE: There were 6 observations read from the data set EMPLOYEE.EMP1.

30
31 proc print data=&spdsusds
32 title 'Listing of Rejected observations';
33 run;

NOTE: There were 2 observations read from the data set
 EMPLOYEE._SPDEDUP048604700067A9F340C7E3E6.

106 Chapter 4 / SPD Engine Data Set Options

Output 4.12 UNIQUESAVE=YES

Output 4.13 Rejected Observations

WHERENOINDEX= Data Set Option
Specifies a list of indexes to exclude when making WHERE expression evaluations.

Valid in: DATA step and PROC step

Default: Blank

Restriction: Cannot be used with IDXWHERE=NO data set option

Engine: SPD Engine only

Syntax
WHERENOINDEX=(name(s))

WHERENOINDEX= Data Set Option 107

Required Argument
(name(s))

a list of index names to exclude from the WHERE planner.

Example: Excluding Indexes
The data set PRECS is defined with indexes:

proc datasets lib=mylib;
 modify precs;
 index create stser=(state serialno) occind=(occup industry) hour89;
quit;

When evaluating the next query, the SPD Engine does not use the indexes for either
the STATE or HOUR89 variables.

In this case, the AND combination of the conditions for the OCCUP and INDUSTRY
variables produce a very small yield. Few observations satisfy the conditions. To
avoid the extra index I/O (computer time) that the query requires for a full-indexed
evaluation, use the following SAS code:

proc sql;
 create table hr80spde
 as select state, age, sex, hour89, industry, occup from mylib.precs
 (wherenoindex=(stser hour89))
 where occup='022'
 and state in('37','03','06','36')
 and industry='012'
 and hour89 > 40;
 quit;

Note: Specify the index names in the WHERENOINDEX list, not the variable
names. In the previous example, both the composite index for the STATE variable,
STSER, and the simple index, HOUR89, are excluded.

108 Chapter 4 / SPD Engine Data Set Options

5
SPD Engine System Options

Introduction to SPD Engine System Options . 109

Syntax . 110

SAS System Options That Behave Differently with the SPD
Engine Than with the Default Base SAS Engine . 110

Dictionary . 111
COMPRESS System Option . 111
MAXSEGRATIO System Option . 113
MINPARTSIZE System Option . 115
SPDEINDEXSORTSIZE System Option . 116
SPDEMAXTHREADS System Option . 117
SPDESORTSIZE System Option . 118
SPDEUTILLOC System Option . 119
SPDEWHEVAL System Option . 120

Introduction to SPD Engine System
Options

SAS system options are instructions that affect your SAS session. They control how
SAS performs operations, such as SAS system initialization, hardware and software
interfacing, and the input, processing, and output of jobs and SAS files. The SPD
Engine system options work the same way as SAS system options. This section
discusses system options that are used only with the SPD Engine, and Base SAS
system options that behave differently with the SPD Engine.

109

Syntax
Here is an example that specifies the system option MAXSEGRATIO in an options
statement:

options maxsegratio=50;

When you specify an option on the command line or in a configuration file, the
syntax is specific to your operating environment. For details, see the SAS
documentation for your operating environment.

SAS System Options That Behave
Differently with the SPD Engine Than
with the Default Base SAS Engine

MSGLEVEL=I
produces WHERE optimization information in the SAS log.

COMPRESS=
cannot perform user-defined compression.

DLDMGACTION=
does not support DLDMGACTION=NOINDEX, but does support ABORT, FAIL,
PROMPT, and REPAIR.

DLCREATEDIR
does not work with the SPD Engine.

ERRORS=MAX
sets the maximum number of observations to 2147483647 for which SAS can
issue error messages.

FIRSTOBS=
cannot be used in the SPD Engine.

SORTPGM=
using the BEST option can cause performance issues.

VALIDMEMNAME=
has the following restrictions on member name when you use
VALIDMEMNAME=EXTEND:

n a member name cannot have a period, such as class.group.

n a member name cannot start with $, such as$class.

110 Chapter 5 / SPD Engine System Options

VALIDVARNAME=
cannot create an index or composite index on a variable if the variable name
contains any of the following special characters:

" * | \ : / < > ? -

Dictionary

COMPRESS System Option
Specifies to compress SPD Engine data sets on disk as they are being created.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Restriction: Cannot be used with ENCRYPT=YES or ENCRYPT=AES

Interactions: “IOBLOCKSIZE= Data Set Option” on page 88
“PADCOMPRESS= Data Set Option” on page 93

Engine: SPD Engine only

Syntax
Form 1: -COMPRESS NO | CHAR | BINARY

Form 2: COMPRESS=NO | CHAR | BINARY

Required Arguments
NO

performs no data set compression.

CHAR
specifies that data in an SPD Engine data set be compressed in blocks by using
RLE (run-length encoding). RLE compresses data by reducing repeated runs of
the same character (including a blank space) to two-byte or three-byte
representations.

Alias YES

BINARY
specifies that data in an SPD Engine data set be compressed in blocks by using
RDC (Ross Data Compression). RDC combines RLE and sliding window
compression to compress the file by representing repeated byte patterns more
efficiently.

COMPRESS System Option 111

Note: This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (character and numeric variables).

Details

When you specify COMPRESS=YES | BINARY | CHAR, the SPD Engine
compresses, by blocks, the data component file as it is created. To specify the size
of the compressed blocks, use the “IOBLOCKSIZE= Data Set Option” on page 88
when you create the data set. To add padding to the newly compressed blocks,
specify “PADCOMPRESS= Data Set Option” on page 93 when creating or updating
the data set. For more information, see “Updates to a Compressed SPD Engine
Data Set” on page 22.

If you are migrating a default Base SAS engine data set that is both compressed
and encrypted, the encryption is retained, but the compression is dropped.

The CONTENTS procedure identifies the compress setting. If the data set is
compressed, PROC CONTENTS prints information about the compression. The
following example explains the Compressed Info fields in the CONTENTS
procedure output:

In general, COMPRESS=CHAR provides good compression when single bytes
repeat; COMPRESS=BINARY provides good compression when strings of bytes
repeat. At the same time, it is more costly to look for strings of bytes that repeat,
than to look for single bytes that repeat. For examples, see “Example 1:
COMPRESS=CHAR” on page 75 and “Example 2: COMPRESS=BINARY” on page
75.

Output 5.1 PROC CONTENTS Compressed Section

Number of compressed blocks
number of compressed blocks that are required to store data.

Raw data blocksize
compressed block size in bytes calculated from the size specified in the
IOBLOCKSIZE= data set option. It is the largest multiple of the observation
length that fits in the block size.

112 Chapter 5 / SPD Engine System Options

Number of blocks with overflow
number of compressed blocks that needed more space. When data is updated
and the compressed new block is larger than the compressed old block, an
overflow block fragment is created.

Max overflow chain length
largest number of overflows for a single block. For example, the maximum
overflow chain length would be 2 if a compressed block was updated and
became larger, and then updated again to a larger size.

Block number for max chain
number of the block containing the largest number of overflow blocks.

Min overflow area
minimum amount of disk space that an overflow requires.

Max overflow area
maximum amount of disk space that an overflow requires.

Accessing compressed files usually requires more processing time. The files have
to be decompressed before reading them and, if updating, they have to be
compressed again when written to disk.

Comparisons
The COMPRESS= system option is overridden by the COMPRESS= LIBNAME
statement option and the COMPRESS= data set option.

If the COMPRESS= data set option or LIBNAME statement option is not set, then
the value of the COMPRESS= system option is used. The COMPRESS= system
option default value is NO.

MAXSEGRATIO System Option
Controls what percentage of index segments to identify as candidate segments before processing the
WHERE expression. This occurs when evaluating a WHERE expression that contains indexed variables.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Default: 75

Engine: SPD Engine only

Syntax
Form 1: -MAXSEGRATIO n

Form 2: MAXSEGRATIO=n

MAXSEGRATIO System Option 113

Required Argument
n

specifies an upper limit for the percentage of index segments that the SPD
Engine identifies as containing the value referenced in the WHERE expression.
The default is 75, which specifies for the SPD Engine to do the following:

n use the index to identify segments that contain the particular WHERE
expression value

n stop identifying candidate segments when more than 75% of all segments
are found to contain the value

The range of valid values is integers between 0 and 100. If n=0, the SPD Engine
does not try to identify candidate segments, but instead applies the WHERE
expression to all segments. If n=100, the SPD Engine checks 100% of the
segments to identify candidate segments, and then applies the WHERE
expression only to those candidate segments.

Details
For WHERE queries on indexed variables, the SPD Engine determines the number
of index segments that contain one or more variable values that match one or more
of the conditions in the WHERE expression. Often, a substantial performance gain
can be realized if the WHERE expression is applied only to the segments that
contain observations satisfying the WHERE expression.

The SPD Engine uses the value of MAXSEGRATIO= to determine at what point the
cost of applying the WHERE expression to every segment would be less than the
cost of continuing to identify candidate segments. When the calculated ratio
exceeds the ratio specified in MAXSEGRATIO=, the SPD Engine stops identifying
candidate segments and applies the WHERE expression to all segments.

Note: For a few tables, 75% might not be the optimal setting. To determine a better
setting, run a performance benchmark, adjust the percentage, and rerun the
performance benchmark. Comparing results shows you how the specific data
population that you are querying responds to shifting the index-segment ratio.

Examples

Example 1: Identifying Index Segments
The following example causes the SPD Engine to begin identifying index segments
that might satisfy the WHERE expression until the percentage of identified
segments, compared to the total number of segments, exceeds 65. If the
percentage exceeds 65, the SPD Engine stops identifying candidate segments and
applies the WHERE expression to all segments:

 options maxsegratio=65;

114 Chapter 5 / SPD Engine System Options

Example 2: Applying the WHERE Expression to All
Segments
The following example causes the SPD Engine to apply the WHERE expression to
all segments without first identifying any candidate segments:

options maxsegratio=0;

Example 3: Not Stopping Until All Index Segments
Are Evaluated
The following example causes the SPD Engine to begin identifying index segments
and to not stop until it has evaluated all segments. Then, the WHERE expression is
applied to all candidate segments that were identified:

options maxsegratio=100;

MINPARTSIZE System Option
Specifies the minimum partition size to use when creating SPD Engine data sets.

Valid in: Configuration file, SAS invocation

Category: System administration: Performance

Default: 16 megabytes

Range: 0 bytes to 2,147,483,647 bytes

Interactions: “PARTSIZE= Data Set Option” on page 94
“PARTSIZE= LIBNAME Statement Option” on page 49
If you set MINPARTSIZE larger than the PARTSIZE= default, then you must specify
PARTSIZE= equal to or larger than MINPARTSIZE.

Engine: SPD Engine only

Syntax
-MINPARTSIZE n | nK | nM | nG

Required Argument
n

is the size of the partition in bytes, kilobytes, megabytes, or gigabytes. The
maximum value for the minimum partition size is 2GB–1 or 2047 megabytes.

Restriction This restriction applies only to 32-bit hosts with the following
operating systems: z/OS, Linux SLES 9 x86, and the Windows
family. If you create a data set with a partition size greater than or
equal to 2 gigabytes, you cannot open the data set with any version

MINPARTSIZE System Option 115

of SPD Engine prior to SAS 9.2. The following error message is
written to the SAS log: ERROR: Unable to open data file
because its data representation differs from the SAS
session data representation.

Details
Specifying MINPARTSIZE sets a lower limit for the partition size that can be
specified with the PARTSIZE= option. The MINPARTSIZE specification could affect
whether the partitions are created with approximately the same number of
observations. A small partition size means more open files during processing. Your
operating system might have a limit on the number of open files used.

SPDEINDEXSORTSIZE System Option
Specifies the memory space size that the sorting utility can use when sorting values for creating an index.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Default: 32M

Engine: SPD Engine only

Syntax
Form 1: -SPDEINDEXSORTSIZE n | nK | nM | nG

Form 2: SPDEINDEXSORTSIZE=n | nK | nM | nG

Required Argument
n

is the size of memory space in bytes, kilobytes, megabytes, or gigabytes.

Range 1,048,576 to 10,736,369,664 bytes

Details
The SPD Engine can create multiple indexes with a single scan of a data set. The
SPD Engine spawns a single thread for each index created, and then processes the
threads simultaneously. Although creating indexes in parallel is much faster than
scanning the data set for each index, the default for this option is NO because
parallel index creation requires extra utility space to store the sorting files and

116 Chapter 5 / SPD Engine System Options

requires additional memory. If index creation fails due to insufficient resources, you
can do one or both the following:

n Increase the size of the utility file space using the SPDEUTILLOC= system
option.

n Set the SAS system option to MEMSIZE=01and increase the utility space that is
used for index sorting using the SPDEINDEXSORTSIZE= system option.

The maximum SPDEINDEXSORTSIZE= value is 10 GB, but this value cannot be
honored on host systems that are limited to 2 GB. On host systems that have a 64-
bit LONG data type, SPD Engine honors values greater that 2 GB. On hosts
systems that have a 32-bit LONG data type, SPD Engine honors only the memory
used up to 2 GB. The SPDEINDEXSORTSIZE option value can be set to a larger
value, but the larger value is not honored.

Note: You receive a warning in the SAS log when the larger value is not honored
and used.

SPDEMAXTHREADS System Option
Specifies the maximum number of threads that the SPD Engine can spawn for I/O processing.

Valid in: Configuration file, SAS invocation

Category: System administration: Performance

Default: 0

Engine: SPD Engine only

Syntax
-SPDEMAXTHREADS n

Required Argument
n

is the maximum number of threads the SPD Engine can spawn. The range of
valid values is 0 to 65,536. The default is zero, which means that the SPD
Engine uses the value of THREADNUM= if set. Otherwise, the SPD Engine sets
the number of threads to spawn to be equivalent to the number of CPUs.

1. For z/OS, increase the REGION size.

SPDEMAXTHREADS System Option 117

Details
Specifying SPDEMAXTHREADS sets an upper limit on the number of threads to
spawn for the SPD Engine processing, which includes the following:

n WHERE expression processing

n parallel index creation

SPDEMAXTHREADS constrains the THREADNUM= data set option.

SPDESORTSIZE System Option
Specifies the memory space size that is needed for sorting operations used by the SPD Engine.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Default: 32M

Engine: SPD Engine only

Syntax
Form 1: -SPDESORTSIZE n | nK | nM | nG

Form 2: SPDESORTSIZE=n | nK | nM | nG

Required Argument
n

is the size of memory space in bytes, kilobytes, megabytes, or gigabytes.

Range 1,048,576 to 10,736,369,664 bytes

Details
The SPD Engine can perform an automatic sort in parallel. The sort size that you
specify for SPDESORTSIZE= should be multiplied by the number of processes that
are in parallel. This total for sort size should be less than the physical memory
available to your process. The proper specification of SPDESORTSIZE= can
improve performance by restricting the swapping of memory that is controlled by the
operating environment.

Perform one of the following if the sort process needs more memory than you
specified:

n restart SAS with the SAS system option MEMSIZE=0 (For z/OS, increase the
REGION size.)

118 Chapter 5 / SPD Engine System Options

n increase the size of the utility file space using the SPDEUTILLOC= system
option

You increase the memory that is used when sorting values for creating an index
using the SPDEINDEXSORTSIZE= option. If you specify to create indexes in
parallel, specify a large-enough space using the SPDEUTILLOC= system option.

Note: The SORTSIZE= option documented for the default Base SAS engine affects
PROC SORT operations. The SPDESORTSIZE= specification affects sorting
operations specific to the SPD Engine.

The maximum SPDESORTSIZE= value is 10 GB, but this value cannot be honored
on host systems that are limited to 2 GB. On host systems that have a 64-bit LONG
data type, SPD Engine honors values greater that 2 GB. On host systems that have
a 32-bit LONG data type, SPD Engine honors only the memory used up to 2 GB.
The SPDESORTSIZE option value can be set to a larger value, but the larger value
is not honored.

Note: You receive a warning in the SAS log when the larger value is not honored
and used.

SPDEUTILLOC System Option
Specifies one or more file system locations in which the SPD Engine can temporarily store utility files.

Valid in: Configuration file, SAS invocation

Category: System administration: Performance

Engine: SPD Engine only

See: The SAS Companion for your operating system details how to specify system options

Syntax
-SPDEUTILLOC directory | ("directory-1" "directory-2"…)

Required Arguments
directory

is an existing directory where the utility files are created.

("directory-1" "directory-2" ...)
is a series of existing directories where the utility files are created. You can use
single or double quotation marks.

Note location can be enclosed in single or double quotation marks. Quotation
marks are required if location contains embedded blanks.

SPDEUTILLOC System Option 119

Details
Operating Environment Information: The SAS Companion for your operating
system details how to specify system options.

The SPD Engine creates temporary utility files during certain processing, such as
automatic sorting and creating indexes. To successfully complete the process, you
must have enough space to store the utility files. The SPDEUTILLOC system option
enables you to specify an adequate amount of space for processing. However, for
OpenVMS on HP Integrity Servers, the libraries must be ODS-5 files. When multiple
directories are specified in the SPDEUTILLOC system option, the directory for the
first utility file is randomly selected when processing starts. The selection continues
in a cyclical fashion to the other directories. Utility files are temporary and are
removed after processing is completed.

Note: To avoid syntax errors, specify multiple directories in the configuration file.

SAS recommends that you always specify the SPDEUTILLOC option or the
UTILLOC option to ensure that you have enough space for processes that create
utility files.

Here are the default utility file locations, in order of precedence:

1 If the system option SPDEUTILLOC is set, it has first priority and is used. If this
location is not valid, then the SAS Work library location is used.

2 If SPDEUTILLOC is not set, then the SAS system option UTILLOC is used. If
this location is not valid, then the SAS Work library location is used.

3 If neither SPDEUTILLOC nor UTILLOC is set, then the SAS Work library location
is used. (The SPD Engine must have Write permission to the SAS Work library
location in order to use it.)

4 In extremely rare circumstances, if none of the above locations is available, then
environment variables are used, in the following order of precedence:
SASTEMP, TEMP, TMP, and TMPDIR. Note that on Windows, TEMP is usually
set. On UNIX, the environment variable can be TEMP, TMP, or TMPDIR.

5 If none of the above locations is available, then on UNIX or z/OS, the /tmp
directory is used. (Windows does not have an equivalent default.)

SPDEWHEVAL System Option
Specifies the process to determine which observations meet the condition or conditions of a WHERE
expression.

Valid in: Configuration file, SAS invocation, OPTIONS statement, System Options window

Category: System administration: Performance

Default: COST

Engine: SPD Engine only

120 Chapter 5 / SPD Engine System Options

Syntax
Form 1: -SPDEWHEVAL COST | EVAL1 | EVAL3EVAL4

SPDEWHEVAL=COST | EVAL1 | EVAL3EVAL4

Required Arguments
COST

specifies that the SPD Engine decides which evaluation strategy to use to
optimize the WHERE expression. This process calculates the number of threads
to be used, which minimizes the overhead of spawning underused threads. This
is the default.

EVAL1
is a multi-threaded index evaluation strategy that can quickly determine the rows
that satisfy the WHERE expression using multiple threads. The number of
threads that are spawned to retrieve the observations is equal to the
THREADNUM= value.

EVAL3EVAL4
is a single-threaded index evaluation strategy that is used for a simple or
compound WHERE expression. All the key variables have a simple index and no
condition tests for non-equality. Multi-threading might be used to retrieve the
observations.

Details
The SPD Engine uses WHINIT, a rules-based WHERE expression planner, to select
the most appropriate evaluation strategy for a query. The SAS system option
MSGLEVEL=I surfaces WHINIT messages to the SAS log that can help you
determine whether one or more indexes are used in a query.

COST, the default setting for SPDEWHEVAL=, analyzes the WHERE expression
and any available indexes. Based on the analysis, the SPD Engine chooses an
evaluation strategy to optimize the WHERE expression. The evaluation strategy can
be EVAL1, EVAL3EVAL4, or a strategy that sequentially reads the data if no indexes
are available. The analysis also determines whether an index or indexes cannot
improve processing time.

COST optimizes the number of threads to use for processing the WHERE
expression. COST determines and spawns the number of threads that can be
efficiently used. Based on the value of THREADNUM=, COST can save significant
processing time by not spawning threads that are underused.

COST is the recommended value for SPDEWHEVAL=, unless the WHERE
expression exactly meets one of the other evaluation strategy criterion. It is strongly
recommended that benchmark tests be used to determine whether a value other
than COST is more efficient.

EVAL1 might be more efficient if the WHERE expression is complex and there are
multiple indexes for the variables. EVAL1 spawns multiple threads to determine
which segments meet the conditions of the WHERE expression. Multiple threads
can also be used to retrieve the observations.

SPDEWHEVAL System Option 121

Note: In a few situations, COST might not perform the best. To determine whether
changing the value to EVAL1 or EVAL3EVAL4 can produce better performance, run
a performance benchmark, change the value, and re-run the performance
benchmark. Comparing results shows you how the specific data population that you
are querying responds to rules-based WHERE planning.

122 Chapter 5 / SPD Engine System Options

	Contents
	What’s New in SAS 9.4 Scalable Performance Data Engine
	Overview
	SPD Engine Data Set Options
	SPD Engine LIBNAME Statement Options
	Cross-Environment Data Access (CEDA)

	Overview: The SPD Engine
	Introduction to the SPD Engine
	SPD Engine Compatibility
	Upgrading SAS 9
	Accessing SPD Engine Files on Another Host
	Cross-Environment Data Access (CEDA) in SPD Engine
	Additional Restrictions for CEDA in SPD Engine

	Using the SMP Computer
	Organizing SAS Data Using the SPD Engine
	Comparing the Default Base SAS Engine and the SPD Engine
	Overview of Comparisons
	The SPD Engine Libraries and File Systems
	Utility File Workspace
	Storing Temporary Data Sets
	Differences between the Default Base SAS Engine Data Sets and
the SPD Engine Data Sets

	Interoperability of the Default Base SAS Engine and the SPD
Engine Data Sets
	Sharing the SPD Engine Files
	Features That Enhance I/O Performance
	Overview of I/O Performance Enhancements
	Multiple Directory Paths
	Physical Separation of the Data File and the Associated Indexes
	WHERE Optimization

	Features That Boost Processing Performance
	Automatic Sort Capabilities
	Queries Using Indexes
	Parallel Index Creation

	The SPD Engine Options

	Creating and Loading SPD Engine Files
	Introduction for Creating and Loading SPD Engine
Files
	Allocating the Library Space
	How to Allocate the Library Space
	Configuring Space for All Components in a Single Path
	Configuring Separate Library Space for Each Component File
Type
	Anticipating the Space for Each Component File
	Storage of the Metadata Component Files
	Metadata Component Files
	Storage of the Index Component Files
	Storage of the Data Component Files
	Initial Set of Paths
	Adding Subsequent Paths
	Omitting Paths

	Renaming, Copying, or Moving Component Files

	Efficiency Using Disk Striping and Large Disk Arrays
	Converting Default Base SAS Engine Data Sets to
SPD Engine Data Sets
	Using the COPY and APPEND Procedures
	Converting Default Base SAS Engine Data Sets Using PROC COPY
	Converting Default Base SAS Engine Data Sets Using PROC APPEND

	Creating and Loading New SPD Engine Data Sets
	Updates to a Compressed SPD Engine Data Set
	Encrypting SPD Engine Data Sets
	SPD Engine Encryption Overview
	SAS Proprietary Algorithm
	AES Algorithm

	SPD Engine Component File Naming Conventions
	Efficient Indexing in the SPD Engine
	Parallel Indexing
	Parallel Index Creation
	Parallel Index Updates

	Backing Up SPD Engine Files
	Storing SPD Engine Data in HDFS

	SPD Engine LIBNAME Statement
	Introduction to the SPD Engine LIBNAME Statement
	Dictionary
	LIBNAME Statement: SPD Engine
	ACCESS= LIBNAME Statement Option
	BYSORT= LIBNAME Statement Option
	COMPRESS= LIBNAME Statement Option
	DATAPATH= LIBNAME Statement Option
	ENDOBS= LIBNAME Statement Option
	IDXBY= LIBNAME Statement Option
	INDEXPATH= LIBNAME Statement Option
	INENCODING= LIBNAME Statement Option
	IOBLOCKSIZE= LIBNAME Statement Option
	METAPATH= LIBNAME Statement Option
	PARTSIZE= LIBNAME Statement Option
	REPEMPTY= LIBNAME Statement Option
	STARTOBS= LIBNAME Statement Option
	TEMP= LIBNAME Statement Option

	SPD Engine Data Set Options
	Introduction to SPD Engine Data Set Options
	Syntax
	SPD Engine Data Set Options List
	SAS Data Set Options That Behave Differently with the SPD Engine
Than with the Default Base SAS Engine
	SAS Data Set Options Not Supported by the SPD Engine
	Dictionary
	ALIGN= Data Set Option
	ASYNCINDEX= Data Set Option
	BYNOEQUALS= Data Set Option
	BYSORT= Data Set Option
	COMPRESS= Data Set Option
	ENCRYPT= Data Set Option
	ENCRYPTKEY= Data Set Option
	ENDOBS= Data Set Option
	IDXBY= Data Set Option
	IDXWHERE= Data Set Option
	IOBLOCKSIZE= Data Set Option
	LISTFILES= Data Set Option
	PADCOMPRESS= Data Set Option
	PARTSIZE= Data Set Option
	STARTOBS= Data Set Option
	SYNCADD= Data Set Option
	THREADNUM= Data Set Option
	UNIQUESAVE= Data Set Option
	WHERENOINDEX= Data Set Option

	SPD Engine System Options
	Introduction to SPD Engine System Options
	Syntax
	SAS System Options That Behave Differently with the SPD Engine
Than with the Default Base SAS Engine
	Dictionary
	COMPRESS System Option
	MAXSEGRATIO System Option
	MINPARTSIZE System Option
	SPDEINDEXSORTSIZE System Option
	SPDEMAXTHREADS System Option
	SPDESORTSIZE System Option
	SPDEUTILLOC System Option
	SPDEWHEVAL System Option

